Читаем Власть роботов. Как подготовиться к неизбежному полностью

В июне 2019 года лауреатами премии Тьюринга за 2018 год стали трое: Джеффри Хинтон, Ян Лекун и Йошуа Бенджио — за вклад в разработку глубоких нейронных сетей. Эта технология, которую также называют глубоким обучением, за последнее десятилетие трансформировала сферу искусственного интеллекта и обусловила технический прогресс, который еще недавно показался бы научной фантастикой.

Водители автомобилей Tesla регулярно доверяются автопилоту при движении по автомагистралям. Google Translate мгновенно выдает читабельный текст даже при переводе с редких языков, о которых слышали лишь немногие из нас, а Microsoft продемонстрировала синхронный машинный перевод с китайского на английский. Дети растут в мире, где общение с Alexa от Amazon — обычное дело, и родители беспокоятся, благотворно ли такое общение. Все эти достижения — и множество других — возможны благодаря глубоким нейронным сетям.

Идея, лежащая в основе глубокого обучения, известна уже не одно десятилетие. В конце 1950-х годов Фрэнк Розенблатт, психолог Корнеллского университета, придумал «перцептрон» — электронное устройство, действующее на принципах, аналогичных функционированию нейронов головного мозга. Розенблатт показал, что простые сети из перцептронов можно научить решать задачи, связанные с распознаванием образов, например цифр.

Работа Розенблатта по нейронным сетям была встречена с энтузиазмом, но, поскольку существенного прогресса добиться не удалось, этот метод был со временем отодвинут на задний план. Лишь маленькая группа исследователей, включавшая в том числе трех лауреатов премии Тьюринга 2018 года, продолжала заниматься нейронными сетями. Специалисты по компьютерным наукам привыкли считать эту технологию маргинальным направлением исследований и почти верным способом похоронить свою карьеру.

Все изменилось в 2012 году, когда команда из исследовательской лаборатории Джеффа Хинтона в Торонтском университете приняла участие в ImageNet Large Scale Visual Recognition Challenge. На этом ежегодном конкурсе группы из множества ведущих мировых университетов и корпораций демонстрируют возможности создания алгоритма, способного правильно распознавать изображения из огромной базы фотографий. Если другие участники пользовались традиционными методами программирования, то команда Хинтона развернула нейронную сеть, обученную на тысячах изображений-образцов. Разработка группы из Торонтского университета произвела ошеломляющее впечатление, и весь мир неожиданно узнал о возможностях глубокого обучения.

В последующие годы практически все крупные технологические компании вкладывали огромные средства в глубокое обучение. Google, Facebook, Amazon и Microsoft, а также китайские ИТ-гиганты Baidu, Tencent и Alibaba сделали нейронные сети основой своих продуктов, деятельности и бизнес-моделей. Сфера производства компьютерной техники также переживает трансформацию, и такие компании, как NVIDIA и Intel, конкурируют в области создания чипов, оптимизирующих работу нейронных сетей. Заработки специалистов по глубокому обучению исчисляются семизначными числами, а сами они превратились в подобие звезд профессионального спорта, поскольку компании конкурируют за ограниченное количество экспертов.

Хотя прогресс в создании искусственного интеллекта в последнее десятилетие был огромным и беспрецедентным, он обусловливался главным образом использованием все более значительных массивов данных для обучения нейронных алгоритмов, поддерживаемых все более быстрой компьютерной техникой. Эксперты в области ИИ приходят к пониманию, что этот подход не обеспечивает устойчивого развития и технологию необходимо подпитывать совершенно новыми идеями, если мы хотим продолжить поступательное движение. Прежде чем обратиться к возможному будущему ИИ, давайте познакомимся с тем, как все начиналось, бросим взгляд на пройденный к настоящему моменту путь и узнаем, как работают системы глубокого обучения, обеспечившие революционный прогресс. Мы увидим, что с самого начала исследования в области искусственного интеллекта характеризовались конкуренцией двух совершенно разных подходов к созданию умных машин. Противоречия между этими двумя школами мысли снова выходят на передний план и, по всей видимости, будут определять направление развития ИИ в последующие годы и десятилетия.

<p>Могут ли машины мыслить?</p>
Перейти на страницу:

Похожие книги

100 великих угроз цивилизации
100 великих угроз цивилизации

Человечество вступило в третье тысячелетие. Что приготовил нам XXI век? С момента возникновения человечество волнуют проблемы безопасности. В процессе развития цивилизации люди смогли ответить на многие опасности природной стихии и общественного развития изменением образа жизни и новыми технологиями. Но сегодня, в начале нового тысячелетия, на очередном высоком витке спирали развития нельзя утверждать, что полностью исчезли старые традиционные виды вызовов и угроз. Более того, возникли новые опасности, которые многократно усилили риски возникновения аварий, катастроф и стихийных бедствий настолько, что проблемы обеспечения безопасности стали на ближайшее будущее приоритетными.О ста наиболее значительных вызовах и угрозах нашей цивилизации рассказывает очередная книга серии.

Анатолий Сергеевич Бернацкий

Публицистика
1941 год. Удар по Украине
1941 год. Удар по Украине

В ходе подготовки к военному противостоянию с гитлеровской Германией советское руководство строило планы обороны исходя из того, что приоритетной целью для врага будет Украина. Непосредственно перед началом боевых действий были предприняты беспрецедентные усилия по повышению уровня боеспособности воинских частей, стоявших на рубежах нашей страны, а также созданы мощные оборонительные сооружения. Тем не менее из-за ряда причин все эти меры должного эффекта не возымели.В чем причина неудач РККА на начальном этапе войны на Украине? Как вермахту удалось добиться столь быстрого и полного успеха на неглавном направлении удара? Были ли сделаны выводы из случившегося? На эти и другие вопросы читатель сможет найти ответ в книге В.А. Рунова «1941 год. Удар по Украине».Книга издается в авторской редакции.В формате PDF A4 сохранен издательский макет книги.

Валентин Александрович Рунов

Военное дело / Публицистика / Документальное
Принцип Дерипаски
Принцип Дерипаски

Перед вами первая системная попытка осмыслить опыт самого масштабного предпринимателя России и на сегодняшний день одного из богатейших людей мира, нашего соотечественника Олега Владимировича Дерипаски. В книге подробно рассмотрены его основные проекты, а также публичная деятельность и антикризисные программы.Дерипаска и экономика страны на данный момент неотделимы друг от друга: в России около десятка моногородов, тотально зависимых от предприятий олигарха, в более чем сорока регионах работают сотни предприятий и компаний, имеющих отношение к двум его системообразующим структурам – «Базовому элементу» и «Русалу». Это уникальный пример роли личности в экономической судьбе страны: такой социальной нагрузки не несет ни один другой бизнесмен в России, да и во всем мире людей с подобным уровнем личного влияния на национальную экономику – единицы. Кто этот человек, от которого зависит благополучие миллионов? РАЗРУШИТЕЛЬ или СОЗИДАТЕЛЬ? Ответ – в книге.Для широкого круга читателей.

Владислав Юрьевич Дорофеев , Татьяна Петровна Костылева

Публицистика / Документальное / Биографии и Мемуары