Скорее всего, разногласия по вопросу об истинном источнике глубокого обучения сохранятся, но не приходится сомневаться, что после состязания ImageNet 2012 года этот метод быстро захватил сферу искусственного интеллекта — как и большую часть крупнейших компаний хай-тека. Американские технологические гиганты Google, Amazon, Facebook и Apple, а также китайские Baidu, Tencent и Alibaba сразу же оценили подрывной потенциал глубоких нейронных сетей и стали создавать команды исследователей и включать эту технологию в свои продукты и деятельность. Google пригласила на работу Джеффа Хинтона, Ян Лекун стал директором новой лаборатории Facebook по исследованию ИИ, и всю эту отрасль охватила полномасштабная война по перекупке специалистов, вследствие чего зарплаты и опционы на акции даже у новоиспеченных выпускников вузов со специализацией в области глубокого обучения стали заоблачными. В 2017 году генеральный директор Сундар Пичаи объявил, что для Google теперь «ИИ на первом месте» и работа над искусственным интеллектом станет одним из важнейших направлений конкуренции компании с другими технологическими гигантами[137]. Google и Facebook придают такое значение этой технологии, что исследователи глубокого обучения получают кабинеты в непосредственной близости от кабинета гендиректора[138]. К концу десятилетия нейронные сети стали настолько господствовать в сфере ИИ, что СМИ часто используют понятия «глубокое обучение» и «искусственный интеллект» как синонимы.
Глава 5
Глубокое обучение и будущее искусственного интеллекта
Внедрение глубокого обучения крупнейшими в мире технологическими компаниями наряду с появлением все более мощных компьютеров и приложений для бизнеса, использующих возможности нейронных сетей, почти не оставляет сомнений, что эта технология прочно вошла в нашу жизнь. Ясно, однако, что текущий темп развития поддерживать сложно и что будущие достижения требуют принципиальных инноваций. Как мы увидим, одним из самых важных в дальнейшем станет вопрос о том, не качнется ли маятник разработки ИИ назад, к символическому подходу и, если это случится, что нужно сделать для его успешного объединения с нейронными сетями. Прежде чем погрузиться в исследование будущего искусственного интеллекта, давайте чуть более предметно познакомимся с принципами глубокого обучения и с обучением этих сетей решению определенных задач.
Как работает глубокая нейронная сеть
В СМИ системы глубокого обучения часто называют «похожими на головной мозг», из-за чего можно легко прийти к ошибочному представлению о сходстве нейронных сетей, применяемых в искусственном интеллекте, с их биологическим образцом. Мозг человека, пожалуй, самая сложная система в известной Вселенной, имеющая около 100 млрд нейронов и сотни триллионов связей. Однако ошеломляющий уровень сложности связан не просто с огромным количеством связей. Он обусловлен работой самих нейронов и тем, как они передают сигналы и адаптируются к новой информации с течением времени.
У биологического нейрона различают три части: тело клетки, где находится ядро, многочисленные отростки — дендриты, принимающие входящие электрические сигналы, и один намного более длинный и тонкий отросток, так называемый аксон, по которому нейрон передает выходной сигнал другим нейронам. И дендриты, и аксон обычно сильно разветвлены, так что дендриты порой принимают возбуждающие сигналы от десятков тысяч других нейронов. Когда совокупность сигналов, поступающих через дендриты, возбуждает нейрон, он генерирует выходной электрический сигнал — так называемый потенциал действия. Однако связи в головном мозге — это не сеть электрических цепей. Аксон одного нейрона передает химический сигнал дендриту другого через особое соединение — синапс. Эти электрохимические взаимодействия играют принципиальную роль в работе мозга и его способности учиться и приспосабливаться, но во многих случаях не до конца понятны. Взять хотя бы механизм действия нейромедиатора дофамина, вещества, связанного с удовольствием или вознаграждением.
Искусственная нейронная сеть отбрасывает почти все эти детали и пытается создать грубое математическое подобие работы и связей нейронов. Если уподобить головной мозг Моне Лизе, то структуры, используемые в системах глубокого обучения, будут в лучшем случае чем-то вроде Люси из Peanuts[139]. Основной план построения искусственных нейронов появился еще в 1940-х годах, и в последующие десятилетия работа над этими системами по большей части была отделена от нейрологии. Алгоритмы для систем глубокого обучения разрабатывались независимо, часто экспериментальным путем и без стремления моделировать процессы, которые могут реально происходить в мозге человека.