Даже маленькие дети зачастую могут выявлять неизвестную им причинно-следственную связь на основе всего лишь одного или нескольких примеров — им даже не нужно много данных, чтобы заметить статистически значимую корреляцию. Вспомните, как вы впервые увидели смартфон — неважно, iPhone или другое устройство с сенсорным экраном, на котором что-то появляется или начинает двигаться, стоит провести пальцем. Для вас это было внове, но, посмотрев раз или два, вы поняли, что здесь имеется причинно-следственная связь. Это и есть первый шаг к узнаванию того, как этим управлять и получать полезный результат[196].
Понимание причинно-следственной связи обязательно для воображения и построения мысленных альтернативных сценариев, позволяющих нам решать задачи. В отличие от алгоритма обучения с подкреплением, который должен тысячи раз потерпеть неудачу, прежде чем поймет, как достичь успеха, мы можем провести своего рода мысленное моделирование и определить вероятные результаты альтернативных действий. Это было бы невозможно без интуитивного понимания причинности.
Такие исследователи, как Перл и Тененбаум, считают, что понимание причинно-следственной связи — в сущности, способность задать вопрос «почему?» и ответить на него — станет важнейшей элементом создания универсального машинного интеллекта. Работа Перла в области причинно-следственной связи оказала огромное влияние на естественные и общественные науки, но он полагает, что исследователи ИИ по большей части не сделали из нее выводов и, в общем, слишком много внимания уделяют корреляции, столь эффективно выявляемой системами машинного обучения[197]. Однако ситуация меняется. Например, Йошуа Бенджио и его команда в Монреальском университете недавно опубликовали результаты исследования новаторского подхода к обеспечению понимания причинности в сети глубокого обучения[198].
Грэм Аллисон, политолог и профессор Гарварда, известен как создатель понятия «ловушка Фукидида». Это понятие отсылает нас к «Истории Пелопоннесской войны» древнегреческого историка Фукидида — хронике конфликта между Спартой и укрепляющимися Афинами в V веке до нашей эры. По мнению Грэма, в войне Спарты и Афин ясно просматривается исторический принцип, применимый и сегодня. В изданной в 2017 году книге «Обречены воевать»[199] он утверждает, что Соединенные Штаты и Китай угодили в современную ловушку Фукидида и, если Китай продолжит наращивать мощь и влияние, конфликт может стать неизбежным[200].
Могла бы система искусственного интеллекта прочитать такой исторический документ, как «История Пелопоннесской войны», и успешно применить полученные знания к современной геополитической ситуации? Если да, то это означало бы, что достигнута одна из важнейших контрольных точек на пути к универсальному искусственному интеллекту — трансферное обучение. Способность получить информацию из одного документа и успешно использовать ее в других областях — один из отличительных признаков человеческого интеллекта и принципиальное условие креативности и инновации. Чтобы универсальный машинный интеллект был по-настоящему полезным, он должен уметь больше, чем просто отвечать на вопросы в конце главы. Он должен быть способен применять полученные знания и возникшее при этом понимание при решении совершенно новых задач. Прежде чем появится какая-то надежда на то, что ИИ-система сумеет это сделать, она должна продвинуться намного дальше поверхностного понимания, которое сегодня достигается в глубоких нейронных сетях, и добиться подлинного постижения. Способность применять знания в разнообразных областях и в новых ситуациях может оказаться самым лучшим тестом на наличие истинного понимания у машинного интеллекта.
Путь к искусственному интеллекту человеческого уровня
Почти все исследователи ИИ, с которыми я разговаривал, считают, что искусственный интеллект человеческого уровня реален и когда-нибудь станет неизбежным. Мне это представляется обоснованным. В конце концов, мозг человека — это, в сущности, биологическая машина. Нет причин полагать, что в биологическом интеллекте есть что-то волшебное или что невозможно когда-нибудь встроить нечто подобное в совершенно иной носитель.