Решение, достигнутое в результате изобретательных и остроумных догадок многих из самых выдающихся физиков-теоретиков нашего времени, было удивительно просто. Как и при формулировании теории относительности, так и здесь соответствующий аппарат был найден в форме чрезвычайно развитых математических абстракций. Величины, которые в классической физике служат для описания состояния системы, заменяются в квантово-механическом формальном аппарате символическими операторами, коммутативность которых ограничена правилами, содержащими квант действия. Это значит, что таким величинам, как пространственные координаты и соответствующие составляющие количества движения частиц, нельзя одновременно приписывать определенные значения. Таким образом, статистический характер формального аппарата выступает как естественное обобщение описания классической физики. Кроме того, это обобщение сделало возможным логически последовательное формулирование закономерностей, ограничивающих индивидуальность тождественных частиц; закономерности эти, как и самый квант, не могут быть выражены на языке обычных физических наглядных представлений.
При помощи методов квантовой механики удалось объяснить большое количество опытных фактов, относящихся к физическим и химическим свойствам веществ. Не только были объяснены во всех деталях связи электронов в атомах и молекулах, но и удалось также глубоко проникнуть в строение и реакции атомных ядер. В связи с этим мы можем упомянуть о том, что вероятностные законы для спонтанных радиоактивных превращений были гармонично включены в статистическое квантово-механическое описание. При изучении превращений атомных ядер при высоких энергиях наблюдены за последние годы новые элементарные частицы; понимание свойств этих частиц продвинулось далеко вперед в результате приспособления формального аппарата к требованиям инвариантности, вытекающим из теории относительности. Все же здесь перед нами встают новые проблемы; решение их, очевидно, требует дальнейших абстракций, которые позволили бы сочетать квант действия с элементарным электрическим зарядом.
Несмотря на всю плодотворность квантовой механики, охватившей такую обширную область опытных фактов, отказ от привычных требований, предъявлявшихся к физическому описанию, заставил многих физиков и философов сомневаться в том, что мы имеем здесь дело с исчерпывающим описанием атомных явлений. В частности, высказывалось мнение, что статистический способ описания должен рассматриваться как временный выход из положения, но что в принципе он может быть заменен детерминистическим описанием. Тщательное обсуждение этого вопроса привело, однако, лишь к разъяснению нашего положения в атомной физике как наблюдателей; это и дало нам тот гносеологический урок, о котором упоминалось в начале доклада.
Поскольку задачей науки является увеличение и упорядочение нашего опыта, всякий анализ возможностей и предпосылок человеческого познания должен опираться на рассмотрение характера и полноты наших способов общения. Основой, конечно, является язык, выработанный для ориентировки в окружающем и для организации человеческого общества. Однако в результате расширения нашего опыта не раз возникали вопросы о том, достаточно ли тех понятий и идей, которые воплотились в нашем обыденном языке. Благодаря сравнительной простоте физических проблем они особенно подходят для исследования того, как употребляются наши способы общения. В самом деле, развитие атомной физики научило нас тому, как, не отступая от обычного языка, можно создать систему понятий, достаточно общую для исчерпывающего описания новых опытных фактов.
В связи с этим настоятельно необходимо уяснить себе, что во всяком отчете о физическом опыте нужно описывать как условия опыта, так и результаты наблюдения теми же словами и средствами, какие употребляются в классической физике. При анализе отдельных атомных частиц это становится возможным благодаря необратимым усилительным эффектам – таким как пятно на фотографической пластинке, остающееся после удара о нее электрона, или как электрический разряд, созданный им в счетчике. Тогда наблюдения касаются только того, когда и где была зарегистрирована частица на пластинке или ее энергия при попадании ее в счетчик. Конечно, эта информация предполагает, что положение фотопластинки относительно других частей экспериментальной установки известно; такими частями могут быть направляющие диафрагмы и затворы, которые служат для локализации в пространстве и времени, или же заряженные и намагниченные тела, которые определяют действующие на частицу внешние силовые поля и позволяют делать измерения энергии. Экспериментальные условия можно менять многими способами, но главное здесь в том, что в каждом случае мы должны быть в состоянии передать другим, что мы сделали и что мы узнали; поэтому-то действие измерительных приборов непременно должно описываться в рамках классических физических понятий.