Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Но в том же 1904 году Гильберт удивил математический мир, восстановив доверие к принципу Дирихле, которое тот утратил после критики Вейерштрасса. До Вейерштрасса предполагалось, что в вариационном исчислении у любого функционала есть минимум. Гильберт доказал, что в конкретном случае энергии ДирихлеJ(u) действительно есть минимум. Он построил минимизирующую последовательность функций, значения которой для интеграла были каждый раз все более низкими и сходились к наименьшему значению. И на ее основе он получил минимум, то есть функцию иу которая де факто достигала этого наименьшего значения. Физики и математики могли вздохнуть с облегчением.

НАУКА НА РАСПУТЬЕ

В конце XIX века физики работали в рамках совместного опыта. Классическая механика (созданная Ньютоном) и классическая электродинамика (завершенная Максвеллом) предоставляли абсолютно удовлетворительный для понимания окружающего нас мира материал. С увеличением точности измерительных приборов и возможности осуществлять все более сложные эксперименты физики начали изучать явления в не самых привычных условиях: при очень высоких скоростях (близких к скорости света) и на макрокосмическом или микроскопическом уровне. Именно тогда стали возникать расхождения с прогнозами, которые давала классическая физика, что привело к пересмотру ее оснований и породило две великие физические теории прошлого века: теорию относительности и квантовую теорию. Первая ставила своей целью объяснить явления, происходящие при высоких скоростях (специальная теория относительности) и космических масштабах (общая теория относительности), вторая же изучала явления атомного масштаба (квантовая механика).

К 1900 году ясность классической физики скрывали всего четыре тучи — проблемы, которые она не могла объяснить: излучение черного тела, фотоэлектрический эффект, спектры химических элементов и эфирный ветер. Первые три проблемы дали дорогу квантовой, а последняя — релятивистской физике. Классический принцип относительности, обязанный своим рождением Галилею, не был способен дать объяснение некоторым электромагнитным явлениям, измеряемым интерферометром (эксперимент Майкельсона — Морли). В 1905 году Альберт Эйнштейн (1879-1955) заложил основы специальной теории относительности в своей статье «К электродинамике движущихся тел». Чтобы решить мнимое противоречие, которое проявлялось при изучении поведения уравнений Максвелла в трансформациях Галилея (не прибегая к гипотетическому эфирному ветру), Эйнштейн предложил поддержать теорию Максвелла, изменив механику Ньютона. Нужно было оставить трансформации Галилея, заменив их на трансформации Лоренца, и принять революционную гипотезу: инвариантность скорости света. Среди его выводов были следующие: отказ от эфира, относительность одновременности, сжатие пространства, замедление времени и так далее. Специальная теория относительности вмиг перечеркнула иллюзию об абсолюте пространства и времени классической физики.

Специальная теория относительности, хотя и была чрезвычайно дерзкой с позиции физики, не требовала математики, неизвестной на тот момент физикам и лежавшей в основе работ Пуанкаре и Хендрика Лоренца (1853-1928). В своем озарении Эйнштейн применил не очень требовательную математику. Однако некоторые физики и математики посчитали, что столь радикальные физические и философские идеи должны быть подкреплены новыми математическими формулировками. И здесь вступил в игру старый товарищ Гильберта, Герман Минковский.

ГИПОТЕЗА ВАРИНГА

Как для Минковского, так и для Гильберта теория чисел была самым чудесным порождением человеческой мысли. В 1908 году, взяв перерыв в работе, чтобы поправить здоровье, Гильберт доказал гипотезу, предложенную британским математиком Эдуардом Варингом (1734-1798):

«Любое целое число представимо как сумма максимум девяти кубов; любое число можно представить в виде не более 19 четвертых степеней, и так далее». Другими словами, без каких- либо доказательств утверждалось, что для любой степени к существует некоторое минимальное число таких степеней (назовем его g(k), поскольку оно зависит от степени выбранного к), которое позволяет выразить любое число л в виде суммы ровно g(k) к-х степеней:

n =х1k + х2k + ... + xg(k)k.

Перейти на страницу:

Похожие книги