Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Пространство-время Минковского четырехмерное. Материя искривляет его так, что объекты перестают двигаться по прямым линиям и начинают двигаться по кривым, по геодезическим, под действием гравитации или некоторого ускорения. Чем больше массы или энергии мы введем, тем больше искривится пространство-время Минковского. Отношение между присутствием массы-энергии и формы четырехмерного пространства-времени задано уравнениями поля Эйнштейна:

G = (8G)/(c4·T).

В левой части уравнения появляется G, то есть тензор кривизны Эйнштейна: он измеряет деформацию пространства и зависит, в свою очередь, от метрического тензора, от gij. расстояния. В правой части, кроме числа , постоянной всемирного тяготения G и скорости света с, появляется тензор энергия-импульс , который воплощает материю. Подводя итог: пространство диктует материи, как она должна двигаться, а материя обозначает для пространства, как оно должно искривляться. Отметим, что в 1917 году Гильберту удалось доказать: евклидова геометрия является настоящей геометрией Вселенной только тогда, когда тензор энергия-импульс точно равен нулю, то есть при отсутствии материи. В любом случае то, что евклидова геометрия была сброшена с пьедестала в глобальном отношении, ни в коем случае не означает, что она не несет локальной пользы в нашем окружении.

Считалось, что Гильберт вывел уравнения теории относительности гравитационного поля раньше, чем Эйнштейн, хотя он никогда не оспаривал его первенство. Гильберт отправил свою статью в печать 20 ноября 1915 года, за пять дней до Эйнштейна. Воспользовавшись своими обширными математическими знаниями, он сформулировал вариационный принцип, из которого выводились уравнения гравитации и электромагнетизма (Эйнштейн, наоборот, ограничился гравитационным взаимодействием.) Он утверждал, что законы физики определяются тем, что некоторый интеграл достигает своего минимума. С другой стороны, некоторая функция, зависящая от римановой метрики, остается инвариантной к произвольным трансформациям координат. С гравитацией и электромагнетизмом он хотел сделать то же самое, что уже было сделано для геометрии: четко установить основания и вывести результаты из минимального числа аксиом или базовых принципов. Аксиоматическая структура, дедуктивный метод и вариационное исчисление — это три основных составляющих вклада Гильберта в физику.

Но если статья Гильберта содержала уравнения общей теории относительности в виде, где была геометризована не только гравитация, но и электромагнетизм, и была отправлена в печать на пять дней раньше, чем статья Эйнштейна, разве не означает это, что честь открытия общей теории относительности принадлежит Гильберту, пусть даже Эйнштейн подготовил ему почву? Ответ на этот вопрос отрицательный по двум причинам. Первая: теория Гильберта не идентична теории Эйнштейна. Формально они равносильны, но различались по физической интерпретации. Для Эйнштейна аксиоматический метод не имел большой пользы в материи; кроме того, в отличие от большинства своих коллег, он не был сторонником идеи, что любая физическая теория должна быть выражена через вариационный принцип. Хотя сегодня имя Эйнштейна ассоциируется у нас с физиком-теоретиком, зацикленным на крайне абстрактных вопросах, следует понимать, что как в годы учебы, так и в период творческого расцвета он всегда был очень близок к экспериментальной реальности. Ему была в большей степени свойственна индукция, чем дедукция.

НАУКА И ВОЙНА

Перейти на страницу:

Похожие книги