Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Но в числе действующих лиц старой квантовой теории, кроме Планка, присутствуют Альберт Эйнштейн и Нильс Бор (1885-1962). В 1905 году, ставшем чудесным годом, Эйнштейн применил квантовую гипотезу к изучению света: световые волны состоят из мельчайших частиц (которые позже получили название фотонов), как это видно из фотоэлектрического эффекта. До середины XIX века корпускулярное видение материи, наследство Ньютона, доминировало над волновым видением. До 1900 года существовала гибридная концепция: твердые тела и флюиды (жидкости и газы) считались состоящими из частиц, а электромагнитное излучение понималось как волны. Теперь же выяснилось, что физикам нужно отказаться от классической концепции материи (волна или частица) ради новой концепции: волна и частица (как в случае со светом).

В 1913 году Бор, стипендиат (благодаря поддержке фонда пивоваренной компании) лаборатории Эрнеста Резерфорда (1871-1937), квантизовал атом с целью объяснить атомные спектры. Прерывистые линии спектров были следствием квантизации энергии электронов внутри атома. К несчастью, модель атома Бора потерпела крах при применении ее к многоэлектронным атомам, и ученые постепенно приходили к выводу, что необходимо радикальное изменение в основаниях физики: появление нового вида механики (Макс Борн (1882-1970) назвал ее квантовой), который содержал бы связную аксиоматику, независимую от классических теорий, и преодолел бы мешанину из принципов, законов и вычислительных инструкций, составлявших старую квантовую теорию.

У Зоммерфельда я научился оптимизму, у гёттингенцев — математике, а у Бора — физике.

Вернер Гейзенберг

В 1925 году молодой физик Вернер Гейзенберг (1901-1976), приват-доцент в университете Геттингена, вывел основы квантовой механики, выздоравливая после приступа сенной лихорадки на острове Гельголанд. Гейзенберг настаивал, что множество всех частот и амплитуд излучения, испускаемого атомом, может считаться полным описанием системы атома, даже если невозможно истолковать его в смысле электронной траектории, которая вызывает излучение, поскольку орбиты электронов внутри атома ненаблюдаемы.

ОДНА ПРОБЛЕМА, ДВА РЕШЕНИЯ

Посмотрим, как квантовые механики решали проблему нахождения различных энергетических уровней электрона атома водорода. В матричной механике нужно было «диагонализовать» матрицу Гамильтона Н, измеряющую общую энергию системы, то есть определить матрицу S так, чтобы матрица W = S-1HS была диагональной; так диагональные элементы Еn — это энергетические значения электрона:

В свою очередь, в волновой механике требовалось решить волновое уравнение Шрёдингера, то есть следующее уравнение в частных производных:

- + V = ,

где — волновая функция (независимая от времени), V — потенциал, а Е — энергия. Если определить оператор Гамильтона как = - + V (то есть кинетическая энергия плюс потенциальная энергия), предыдущее уравнение можно переписать, чтобы оно приняло вид = и представляло собой то, что известно как проблема собственных значений, или проблема Штурма — Лиувилля, поскольку ею занимались французские математики Жак Шарль Франсуа Штурм (1803-1855) и Жозеф Лиувилль (1809-1882). Она называется так, поскольку это последнее уравнение допускает решение для некоторых значений и Е, которые получают название собственных функций и собственных значений, соответственно.

Собственные значения

Перейти на страницу:

Похожие книги