Читаем Вначале была аксиома. Гильберт. Основания математики полностью

В признании сходства между двумя механизмами есть заслуга Гильберта. Он посмеивался над Борном и Гейзенбергом, так как, открыв матричную механику, они столкнулись с теми же трудностями, с которыми, конечно же, сталкиваются все математики, работающие с бесконечными матрицами. Когда они обратились за помощью к Гильберту, он сказал им (вспомнив свою работу над интегральными уравнениями 20-летней давности), что единственный раз он столкнулся с матрицами, когда те появлялись как побочный продукт изучения собственных значений дифференциального уравнения с граничными условиями (то есть когда интегральное уравнение преобразовывалось в систему бесконечных линейных уравнений). Он предположил, что если они найдут дифференциальное уравнение, порождающее эти матрицы, то, возможно, получат больше информации. Гейзенберг и Борн подумали, что он сказал это для того, чтобы отвязаться от них, а на самом деле не знал решения этого вопроса. Позже Гильберт шутил, указывая на то, что если бы они его тогда послушали, то открыли бы волновую механику Шрёдингера на полгода раньше него. Это был путь, по которому шли Шрёдингер, Эккарт и Паули, чтобы показать идентичность обеих теорий с математической точки зрения.

Единственная цель теоретической физики состоит в вычислении результатов, которые могут быть сравнены с опытом, и вовсе нет необходимости в утвердительном описании всего хода явлений.

Поль Дирак

Осенью 1926 года Паскуаль Йордан и британский физик Поль Адриен Морис Дирак (1902-1984) независимо друг от друга начали разрабатывать теорию преобразований, чтобы раз и навсегда объединить квантовые механики. Так как квантовые величины, введенные Гейзенбергом, определяли новый тип алгебры (для него умножение не было коммутативным), Дирак решил назвать q-числами величины, которые так себя ведут (хотя q здесь происходило не от слова quantum, а от английского queer, то есть «странный», «необычный»). Итак, абстрактная алгебра #-чисел допускает различные представления или образы (так же как одна и та же система аксиом может допускать разные модели), два из которых — матричная и волновая механика.

ДЕЛЬТА-ФУНКЦИЯ ДИРАКА

В матричной механике речь шла о поиске матрицы S, чтобы матрица W = S-1HS была диагональной. Если выделить HS в этом уравнении, получается HS = SW. И если, применяя правило умножения матриц, записать то, что означает это последнее уравнение для элементов каждой матрицы, можно получить систему бесконечных линейных уравнений (напоминает получившуюся при преобразовании интегрального уравнения):

hpqSqn = EnSpn. [1]

q=1

С другой стороны, в волновой механике пытались решить волновое уравнение Шрёдингера = , определяя собственные значения, являющиеся решением. Если в уравнение ввести собственную функцию n, назначенную собственному значению Еn , получается:

n = nn. [2]

Перейти на страницу:

Похожие книги