Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое — непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству Lr И для этих двух пространств действовала теорема Фишера — Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.
До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств lb2 или Lr Фон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.