С тех пор она известна как аксиоматика ZF (по их инициалам) теории множеств. Итак, в ZF парадокс класса Рассела превращается в доказательство того, что этот класс не является множеством, другими словами, что его не существует в рамках этой теории, в связи с чем антиномия испаряется в воздухе. Если мы предположим, что R — это множество, и столкнемся с абсурдом, это будет означать, что R — не множество.
Аналогично, парадокс Кантора превращается в доказательство того, что «множество» всех множеств V — это не множество, поэтому его также не существует внутри теории. В ZF такая загадка, как парадокс брадобрея, демонстрирует отсутствие существования индивидуума с этими характеристиками. Более того, аксиомы ZF блокируют цикличность, которая с помощью различных стратегий делает очевидной несостоятельность парадоксов. Формулы типа R R запрещены в ZF, поскольку в аксиоме основания, или регулярности, установлено, что ни одно множество не принадлежит самому себе, то есть (перевернутое A)x(x /х).
При этой аксиоме опасных множеств просто не существует.
Следует заметить, что при наличии ZF не только были устранены парадоксы неформальной теории множеств, но и стало возможным омножествление математики: с определением функции как множества упорядоченных пар, предложенным Феликсом Хаусдорфом (1868-1942) и Казимиром Куратовским (1896-1980) чуть позже, это понятие (столп анализа) оказалось омножествленным, что упрочило обоснование математики с помощью множеств. Все головокружительное разнообразие математических структур оказалось сведено к их самым базовым компонентам — множествам.