Читаем Вначале была аксиома. Гильберт. Основания математики полностью

9. x не принадлежит x (аксиома основания, или регулярности).

Если к этим аксиомам добавить так называемую аксиому выбора, получится система ZFC (С — от английского choice — «выбор»). В 1930-е годы теория множеств ZFC была расширена теорией классов и множеств фон Неймана — Бернайса — Гёделя (известной среди математиков по аббревиатуре NBG). Фон Нейман предложил иерархическую и накопительную конструкцию вселенной множеств, которую обычно схематично представляют в виде перевернутого конуса (см. рисунок). На основе пустого множества, путем повторения (с помощью трансфинитной рекурсии) операций «части множества- и «объединение множества- он построил все этажи, на которых упорядоченно располагаются множества — от самых маленьких до самых больших: 0 = , 1 = {0} = {}, 2 = {0, 1} = {, {}} и так далее. В этой теории парадоксы Рассела и Кантора доказывают, что R и V — не множества, а классы, которые принимаются в рамках этой теории. Кофинальные элементы, обладающие иерархией, не являются членами никакого другого множества, потому что они слишком большие и соответствуют классам.

Иерархическая конструкция вселенной множеств, разработанная фон Нейманом.

С тех пор она известна как аксиоматика ZF (по их инициалам) теории множеств. Итак, в ZF парадокс класса Рассела превращается в доказательство того, что этот класс не является множеством, другими словами, что его не существует в рамках этой теории, в связи с чем антиномия испаряется в воздухе. Если мы предположим, что R — это множество, и столкнемся с абсурдом, это будет означать, что R — не множество.

Аналогично, парадокс Кантора превращается в доказательство того, что «множество» всех множеств V — это не множество, поэтому его также не существует внутри теории. В ZF такая загадка, как парадокс брадобрея, демонстрирует отсутствие существования индивидуума с этими характеристиками. Более того, аксиомы ZF блокируют цикличность, которая с помощью различных стратегий делает очевидной несостоятельность парадоксов. Формулы типа R R запрещены в ZF, поскольку в аксиоме основания, или регулярности, установлено, что ни одно множество не принадлежит самому себе, то есть (перевернутое A)x(x /х).

При этой аксиоме опасных множеств просто не существует.

Следует заметить, что при наличии ZF не только были устранены парадоксы неформальной теории множеств, но и стало возможным омножествление математики: с определением функции как множества упорядоченных пар, предложенным Феликсом Хаусдорфом (1868-1942) и Казимиром Куратовским (1896-1980) чуть позже, это понятие (столп анализа) оказалось омножествленным, что упрочило обоснование математики с помощью множеств. Все головокружительное разнообразие математических структур оказалось сведено к их самым базовым компонентам — множествам.

Перейти на страницу:

Похожие книги