Читаем Вначале была аксиома. Гильберт. Основания математики полностью

В 1877 году Кантор построил биекцию между отрезком и квадратом. В отрезке было столько же точек, сколько и в квадрате. Возможность установить соответствие по одному между одномерной прямой и двумерной плоскостью заставила его воскликнуть: «Я это вижу, но я в это не верю!» Дюбуа-Реймон пошел еще дальше и заявил, что это «противно здравому смыслу». С1890 по 1891 год Пеано и Гильберт вообразили соответствующие непрерывные кривые, способные пройти через каждую точку квадрата. Кривые Пеано и Гильберта (одномерные линии, способные заполнить двумерные квадраты) только усугубили проблему размерности. Как различить «измерения»? Пуанкаре подчеркнул необходимость надлежащего определения измерения.

Брауэр и топология

С 1908 по 1911 год Брауэр взял паузу в жестокой борьбе за интуиционизм и заложил основы новой математической дисциплины — топологии, «геометрии на резиновом листе» (как выразился Пуанкаре). Для начала он предложил несколько контрпримеров, о которые разбивались большинство результатов, полученных Артуром Шёнфлисом (1853-1928), другом Гильберта. И уже в 1911 году он представил теорему об инвариантности размерности с помощью бинепрерывного приложения, то есть гомеоморфизма, что положило конец сомнениям, зароненным Кантором, Пеано и Гильбертом: m-мерное и п-мерное пространства негомеоморфны, если m отличается от n. Они могут поддаваться биекции, но никогда не гомеоморфны, потому что эта биекция не будет непрерывной. Топология демонстрировала торжество здравого смысла.

После каждой итерации кривая Г ильберта змеится все больше и больше, прежде чем (в пределе) полностью покрыть квадрат.

Вклад Гаусса, Римана и, наконец, Гильберта позволил геометрии окончательно освободиться от наследия Евклида и Канта (несмотря на протест Фреге). Брауэр предложил отказаться от априорного подхода Канта к пространству, но более решительно придерживался априорного подхода ко времени. Математика ведала свойствами времени, поскольку его ход сводился к арифметической последовательности: 0, 1, 2, 3, 4... 1 после 0, но до 2, и так далее.

Согласно Брауэру, нужно было восстановить конструктивистское видение математики Пуанкаре. Несмотря на перевод и адаптацию работ Кантора на французский язык, Пуанкаре получал шпильки в свой адрес со стороны Рассела и Цермело, которые называли его ретроградом, игнорирующим новый математический метод. Но и Пуанкаре не молчал, насмехаясь над логицистским течением: «Логика не стерильна, она порождает противоречия». Кроме того, он указывал на то, что если бы всю математику можно было вывести на одних только правилах логики, получилось бы, что математика была всего лишь гигантской тавтологией, логической истиной в стиле А = А. С его точки зрения, логика напоминала машину по производству сосисок: на входе помещают свинью, а на выходе получается вполне упорядоченная связка. Но математика работает не как пианола. Математическое доказательство представляло собой творческий механизм: благодаря интуиции мы способны доказать бесконечное число силлогизмов за конечное число шагов (принцип индукции). Именно этот переход от конечного к бесконечному определяет, по мнению Пуанкаре, чудо математики. Интуиция — это молния, которая освещает математику путь посреди ночи и позволяет ему изобретать математику. Посредством интуиции именно человеческий разум создает математические объекты.

Перейти на страницу:

Похожие книги