Читаем Вначале была аксиома. Гильберт. Основания математики полностью

Альфред Тарский и Курт Гёдель в Вене в 1935 году. Своими ограничительными теоремами оба поспособствовали разрушению возведенной Г ильбертом конструкции математики.

Давид Гильберт, 1930-е годы. 

БУРБАКИ

После Второй мировой войны ультраформалистская концепция математики сформировалась в виде бурбакизма. Группа молодых французских математиков (Андре Вейль, Анри Картан, Жан Дьёдонне и другие) собралась в 1935 году и решила назвать себя именем потерпевшего поражение французского генерала Бурбаки, поскольку еще в университете один шутник-студент, учившийся на курс старше, подбросил им неверные теоремы, носящие имена известных генералов. Коллектив Бурбаки подписывался под многочисленными докладами и монографиями и считал себя настоящим интеллектуальным наследником Гильберта. Под лозунгом «Долой Евклида!» Бурбаки представлял математику в абстрактном и чистом виде, который выкристаллизовался в виде высокоаксиоматичной работы «Элементы математики». Эта традиция представлять математику как подарок небес, лишенный любой земной неточности, в течение 1970-1980-х годов оказывала влияние на преподавание абстрактной теории множеств в средних школах Европы.

Собрание Бурбаки, 1938 год. Слева направо: С. Вейль, Ш. Пизо, А. Вейль, Ж. Дьёдонне, К. Шаботи, Ш. Эресманн и Ж. Дельсарт.

Даже логические аксиомы и аксиомы теории множеств были получены как результат анализа неформальных доказательств. Кроме того, когда обычный математик рассуждает о континууме действительных чисел, он никогда не думает о нестандартных (счетных) моделях континуума (они существуют, если работать аксиоматически в рамках ZFC, и для заядлого формалиста они столь же справедливы, как и стандартная модель). С точки зрения специалиста в области анализа или топологии, для которого континуум — это операционная реальность, существование счетных моделей означает просто бедность формального языка как средства подражания неформальным рассуждениям. Несмотря на яркость метафоры, введенной Гильбертом, математика — это не здание или храм, она больше похожа на город с его проспектами, кварталами, новостройками и опустевшими домами, огороженными под снос.

ГИБЕЛЬ БОГОВ

С приходом Гитлера к власти в 1933 году Людвиг Бибербах (присоединившийся к нацистской партии) встал во главе математики в Германии, продвигая «арийскую, или немецкую», математику (Deutsche Mathematik). Теория относительности была отвергнута как еврейское мошенничество. Та же участь постигла теорию множеств — вероятно, из-за использования в ней еврейского алфавита для обозначения трансфинитных кардинальных чисел (хотя также сыграло роль то, что Бибербах был сторонником Брауэра в Берлине). Еврейским преподавателям было запрещено вести занятия, и одного за другим их сняли с должностей.

Математический институт в Гёттингене быстро сдал позиции, и его международный престиж был утрачен, к большому огорчению Гильберта. Герман Вейль — любимый ученик, который сменил его на кафедре, — был вынужден эмигрировать, поскольку его жена была еврейкой по происхождению, и в итоге он присоединился к Альберту Эйнштейну и Курту Гёделю в Институте перспективных исследований в Принстоне. Рихард Курант был отстранен от работы и обосновался в Нью-Йоркском университете. Бернайс вернулся в Швейцарию.

Гильберт был обескуражен новой политической ситуацией в Германии. Как-то он спросил у Блюменталя, своего первого аспиранта, какой курс тот читает, и услышал в ответ, что ему больше не разрешено вести занятия. Старик был ужасно возмущен. Когда на банкете его усадили рядом с новым министром образования и тот спросил: «Как в Гёттингене с математикой теперь, когда его очистили от еврейского влияния?», Гильберт парировал: «Математика в Гёттингене? Но ведь ее уже нет!»

Перейти на страницу:

Похожие книги