Читаем Вода, которую мы пьем полностью

Наконец, последняя неприятность: представим, что, складывая марлю, мы можем добиться таких показателей фильтра, что через него не проходят частицы размером в несколько ангстрем – то есть молекулы, атомы, ионы. Казалось бы, прекрасно – мы задержим взвесь, бактерии, вирусы, всю органику и пресловутые ионы тяжелых металлов! А что мы получим на выходе? Может быть, ничего, если молекулы воды тоже не пройдут через наш фильтр, а в лучшем случае – «акву дистиллята», без необходимых нам макро– и микроэлементов! Ведь ионы натрия, магния, калия, кальция, хлора и все остальное, что делает воду питьевой водой, имеют такие же размеры, как ионы тяжелых металлов. В общем, несложно сделать фильтр, который бы все задерживал, но сконструировать такой, который бы задерживал ненужное, а нужное пропускал, – вот проблема!

Но давайте не будем торопиться с ее решением, а закончим с механической фильтрацией. Вам уже ясно, что это фильтрация через сито или сетку, то есть через инертную среду с определенным размером отверстий или пор, не пропускающих более крупные, чем эти отверстия, частицы. В качестве фильтрующего материала используется, конечно, не марля, а полипропиленовое волокно – в виде блока-картриджа, который подлежит замене по истечении его ресурса.

В зависимости от того, частицы какого размера могут быть задержаны, механическую фильтрацию делят на:

– ультрафильтрацию (задерживается 95 % частиц размером 0,2–0,5 мкм);

– два класса микрофильтрации (задерживается 95 % частиц размерами 0,5–5 и 5—15 мкм);

– два класса макрофильтрации (задерживается 95 % частиц размерами 15–50 и более 50 мкм).


Следовательно, механический фильтр способен, в принципе, задерживать крупные и мелкие частицы взвеси, бактерии и, с некоторой вероятностью успеха, вирусы и крупные органические молекулы. Что касается газов, металлов, хлорорганики и так далее, то они ему не по плечу; борьба с ними – не его задача.

Макрофильтрация обычно используется в предфильтрах, патроны которых врезают в водопроводную трубу на входе ее в квартиру, чтобы очистить воду от крупных частиц; тут можно поставить два предфильтра, на холодную и горячую воду,[17] и можно, разумеется, закладывать в патроны картриджи для микрофильтрации. Естественно, если такой картридж с очень мелкими порами (0,5–1 мкм), то он быстро засорится; оптимальный размер – 5 мкм. А вот в системе доочистки перед самым краном может присутствовать модуль микрофильтрации с размером пор 0,5–1 мкм, если в квартире установлен предфильтр. Если же его нет, то в систему перед краном можно установить два картриджа с порами 5 мкм и 0,5–1 мкм.

Теперь уместно поговорить о фильтрах, основанных на явлении осмоса и обратного осмоса, так как в них, по сути дела, реализуется такая же процедура очистки, как в механических фильтрах, только на молекулярном уровне. Твердое тело является очень мелкой природной сеткой, так как между атомами есть пустоты размером в несколько ангстрем. Но эта сетка трехмерная и исключительно плотная, она не пропускает ничего. Однако представьте, что мы изготовили пленку-мембрану толщиной в один атом или молекулу, а реально – во много молекулярных слоев, но все-таки весьма тонкую, от 1 мм до 0,1 мм или еще тоньше. В этой пленке между молекулами будут «отверстия-поры», причем очень маленькие, гораздо меньше, чем в механических фильтрах. Питьевая вода состоит из молекул H₂O и множества молекул и ионов примесей, и все они имеют хотя и малые, но разные размеры. Если процеживать воду через мембрану (точно так же, как мы это делали через марлю), то пройдут небольшие молекулы H₂O и близкие к ним по величине, а более крупные будут задержаны. Это и есть принцип осмотической, или мембранной, фильтрации.

Чтобы разобраться с ним окончательно, я опишу классический опыт французского физика Нолле, открывшего явление осмоса в 1748 г. Представьте цилиндр размером с обычный стакан, открытый с обоих концов; один конец (дно) затягиваем пленкой из бычьего пузыря, наливаем в цилиндр раствор сахара в воде и погружаем его дном в сосуд с чистой водой. Большие молекулы сахара не могут пройти сквозь материал пузыря, а молекулы воды проходят, и мы наблюдаем, как изменяется уровень жидкости в цилиндре. Бычий пузырь в данном случае является полупроницаемой мембраной.

В наше время такие мембраны изготавливают из полимерных и керамических материалов, и, в зависимости от размера пор, с их помощью осуществляется:

– обратный осмос;

– нанофильтрация;[18]

– ультрафильтрация;

– микрофильтрация.


Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука