Читаем Вода, которую мы пьем полностью

Самая мелкая «сетка» (обратный осмос) пропускает лишь молекулы воды, и в результате мы получаем нечто близкое к воде дистиллированной. При нанофильтрации задерживаются взвеси, микрофлора (включая вирусы), любая органика и частично ионы натрия, кальция и магния; при ультрафильтрации – взвеси, микрофлора и крупные органические молекулы; при микрофильтрации – взвеси и бактерии. Этот способ фильтрации применяется прежде всего для удаления бактериологических и органических загрязнений (в том числе – хлорорганики), а также обессоливания воды (в случае обратного осмоса). Разумеется, можно сочетать в фильтре несколько мембран одного или разных типов и комбинировать мембранный фильтр с другими – например, с работающими по принципу ионного обмена. В дальнейшем я почти не буду касаться мембранной фильтрации, так как эти фильтры дороги и рассчитаны скорее на коллективное, чем индивидуальное применение.

Перейдем к очень распространенному методу сорбционной фильтрации.Сорбцией называется поглощение растворенных в воде веществ поверхностью твердого сорбента, в данном случае – материала, наполняющего фильтр. От механической фильтрации этот процесс отличается тем, что материал механического фильтра инертен, а сорбционного – активен: он захватывает примеси и удерживает их силами молекулярного притяжения. Разумеется, тут возникают такие проблемы, как с марлей: чтобы сорбент работал эффективно, его поверхность при малом объеме должна быть велика. Как этого добиться?

Давайте рассмотрим такой пример. Пусть у нас имеется стеклянная пластина размером 10ґ10 см и толщиной 1 см. Ее объем равен 100 см³, а полная площадь поверхности (сверху, снизу и с боков) – 240 см²; таким образом, отношение S/V (поверхности к объему) составляет 2,4. Разрежем пластину на 100 кубиков по 1 см; их суммарный объем не изменился, но суммарная поверхность теперь равна 600 см², а S/V = 6. Если мы возьмем молоток и раздробим стеклянные кубики на более мелкие частички, то их объем опять-таки не увеличится, а общая поверхность станет гораздо больше. Отсюда вывод: чтобы при заданном объеме (например, величиной с кулак) поверхность сорбента была велика, он должен состоять из мелких частиц.

Как можно дополнительно увеличить эту поверхность? Стекло – плотный материал, практически без пор, но мы можем взять субстанцию рыхлую, пористую – скажем, уголь. В каждой частице угля размером 1 мм имеется множество внутренних пор, незаметных глазу, но значительно увеличивающих его поверхность. Прекрасный материал для наших целей! Во-первых, не ядовит и легко дробится в порошок, во-вторых, захватывает и складирует на своей поверхности (в основном в порах) различные примеси, а в-третьих, его можно активировать. Активация – особая процедура, в результате которой различных пор, диаметром от 20–30 до 1000 ангстрем и еще крупнее, становится гораздо больше. Их так много, что полная поверхность 1 г активированного угля, производимого отечественными и зарубежными фирмами, равна 800—1500 м²!

Сорбционные фильтры удаляют из воды хлорорганику (хлороформ, четыреххлористый углерод, бромдихлорметан и другие вещества), а также тяжелые металлы (железо, свинец и др.), взвесь, бактерии и, в пределах своих возможностей, вирусы. Вполне понятно, что при фильтрации загрязненной воды примеси, осевшие в порах, забивают их, и спустя некоторое время, определяемое сорбционной способностью фильтра, его необходимо заменить. К тому же уловленные фильтром микроорганизмы никуда не исчезают и даже более того – они способны размножаться в фильтрующем материале. Чтобы этого не случилось, требуются специальные меры. Еще один важный момент: необходимо, чтобы вода проходила через угольный фильтр с небольшой скоростью (примерно один стакан в минуту на 100 г угля), иначе качественной очистки не получится.

Существует возможность улучшить практически все показатели сорбционного фильтра, если, например, смешать гранулы угля с измельченным полиэтиленом и подвергнуть смесь спеканию либо получить угольное волокно путем карбонизации волокон вискозы с последующей его активацией. Структура такого материала напоминает клубок нитей толщиной 6—10 мкм, с большим количеством пор и огромной активной поверхностью. Подобная разработка выполнена известной фирмой «Аквафор»: в выпускаемых фирмой фильтрах используется материал аквален.

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука