Срочно требовалось придумать новые способы изучения этих бесчисленных регистрограмм. Гумбольдт предвидел эту проблему еще в 1830-х гг. и убедил Генриха Бергхауза опубликовать своего рода графический справочник к своему труду «Космос» – «Физический атлас», в котором, помимо прочего, с помощью диаграмм были представлены изменения климата, флоры, фауны и геологических особенностей по всему земному шару. В Британии Фрэнсис Гальтон придумал визуальный способ нахождения средних значений для метеорологических регистрограмм, состоявший в наложении друг на друга серии таких кривых и графическом определении средней линии. Эти и другие новаторские методы визуального анализа обещали заменить субъективные суждения метеорологов объективным знанием, основанном на изобилии данных, которое обеспечивалось приборами-самописцами. Однако, как на основе разрастающихся объемов регистрограмм выйти на новый уровень понимания физических процессов, по-прежнему оставалось неясно. Кроме того, объемы данных были неравны: одних – слишком много, других – недостаточно[105]
.Одна из проблем заключалась в том, что атмосфера была объемной, тогда как метеорологи располагали данными, собранными, главным образом, у поверхности земли. Это стало одной из причин, по которым Пьяцци Смит так увлекся спектроскопом. Прибор позволял наблюдателю одномоментно охватить взглядом всю невообразимую толщу атмосферы, отделявшую его от космоса, что было большим преимуществом, но также и серьезным недостатком: спектроскоп не давал возможности наблюдать по отдельности разные слои атмосферы. Каждая молекула на линии наблюдения отражалась на спектрограмме. Таким образом, спектроскоп сглаживал неоднородность атмосферы и позволял отслеживать изменения ее общего состояния. Но Пьяцци Смит мирился с этой особенностью, считая, что преимущества такого наблюдения перевешивали недостатки.
Были и другие способы узнать, что происходит в атмосфере, например подняться в небо и вести наблюдения непосредственно
Подняться в небо, скорее в образном, а не буквальном смысле, ученые могли, обратив более пристальное внимание на облака, ведь те находились в воздушных потоках, формировавших погоду и климат, и, исследуя их размеры, форму и движение, можно было составить карту невидимого воздушного океана. Подобно флагам, реющим в верхних слоях атмосферы, облака показывали наблюдателям на земле, в какую сторону дует ветер, какова его сила, а также сколько водяного пара присутствует в воздухе. Другими словами, они могли не только, к огорчению астрономов, заслонять небеса, но и, напротив, помогать заглянуть в таинственные верхние слои атмосферы, чтобы выявить закономерности движения воздушных масс[106]
.Классификация облаков стала первым шагом на этом пути. Предложенная Люком Говардом в начале XIX в., она позволила упорядочить их изучение. Однако он не мог с уверенностью сказать, применима ли его систематизация повсеместно. Одинаковы ли облака по всему земному шару или же в разных частях света есть свои специфические типы облаков? Век уже подходил к концу, а никто так всерьез и не попытался ответить на этот вопрос. Только в 1885 г. состоятельный метеоролог-любитель по имени Ральф Эберкромби отправился в кругосветное плавание, задавшись именно этой целью – определить, насколько универсальна система Говарда. Он установил, что основные типы облаков действительно универсальны, хотя в разных местах земного шара могут предвещать разную погоду[107]
.