При прямом действии происходит поглощение энергии непосредственно веществом биосубстрата с ионизацией или возбуждением его атомов. Эффект ионизации сводится к потере атомами биомолекул одного или нескольких электронов. Возбужденное состояние характеризуется переходом электронов на более высокий энергетический уровень, в результате чего такие атомы пребывают в неустойчивом состоянии и легко диссоциируют с образованием свободных радикалов. Все эти изменения могут привести к разрыву связей, окислению химических групп и образованию «сшивок» между молекулами биосубстрата, в результате чего нарушается его биологическая активность.
Непрямое (косвенное или опосредованное) действие ИИ предполагает первоначальное образование химически активных агентов, способных передавать энергию ИИ молекулам биосубстрата. При воздействии первичных реагентов на молекулы воды и липиды могут образовываться перекисные радикалы и продукты радиационного окисления липидов, способные вызывать повреждения молекул.
Доля повреждающего эффекта за счет прямого и косвенного действия ИИ в различных тканях, клетках и даже субклеточных образованиях неодинакова поскольку содержание воды в различных структурах может быть неодинаковым. В «плотноупакованных « структурах, практически не содержащих воду (например, таких, как хромосомы), будет преобладать прямой механизм повреждающего действия ИИ. В растворах и высокогидратированных системах ведущая роль принадлежит косвенному действию. На долю прямого действия может приходится от 30 до 60% поражающего эффекта излучений.
При облучении высокими дозами ИИ, первичные механизмы вызывают структурные нарушения в любых биомолекулах. В случае облучения в относительно невысоких дозах, но способных вызывать развитие ОЛБ у человека, в первую очередь повреждаются нуклеиновые кислоты, белки, липопротеиды, полимерные соединения углеводов. В первые часы и сутки после облучения эти изменения наиболее выражены в высокорадиопоражаемых клетках и тканях, таких как: лимфоидная, миелоидная, герментативный, кишечный,и покровный эпителий, секреторные клетки пищеварительных желез и эндокринных органов. В дальнейшем, с подключением вторичных механизмов поражаются соединительная, хрящевая, костная и нервная ткани.
Глубокие структурно-метаболические нарушения в тканях, вызванные первичными механизмами ИИ, приводят к накоплению перекисей, разрушению лизосом, что вызывает активацию и освобождение гидролитических ферментов, активируется протеолиз, фенолиз, липолиз, усиливаются окислительные процессы, что ведет к выработке вторичных радиотоксинов – белковой природы, вторичных липидных радиотоксинов, гистамина и др.
В крови возрастает количество токсических веществ, что формирует лучевой токсический эффект.
Радиопоражаемость тканей описана французскими учеными Бергонье и Трибондо в 1906г. . Закон гласит – радиопоражаемость тканей определяется степенью дифференцировки клеток и их митотической активностью. При этом чем менее дифференцирована клетка (стволовая) и чем выше ее митотическая активность, тем выше ее радиопоражаемость. И наоборот – чем более дифференцирована клетка и меньше ее митотическая активность, тем более клетка радиорезистентна (лимфоидная ткань
Важную роль в поражающем действии ИИ играет кислород, вернее так называемый «кислородный эффект». Под его влиянием повышается поражение макромалекул и биологических систем при их облучении. Это происходит вследствие взаимодействия кислорода с радикалами биомолекул с последующим образованием новых перекисных радикалов, которые вызывают поражение тканей относящиеся к числу необратимых структурных изменений.
Итак, подводя итог современных взглядов на механизм биологического действия ИИ мы можем как бы поэтапно просмотреть как в облученной клетке развиваются структурно-метаболические процессы.