Читаем Война чипов. Борьба за самую важную технологию в мире полностью

Полупроводники - область специализации Шокли - представляют собой уникальный класс материалов. Большинство материалов либо свободно пропускают электрический ток (например, медные провода), либо блокируют его (например, стекло). Полупроводники отличаются от них. Сами по себе полупроводниковые материалы, такие как кремний и германий, подобны стеклу, практически не проводящему электрический ток. Но при добавлении определенных материалов и приложении электрического поля ток может начать течь. Например, добавление фосфора или сурьмы к полупроводниковым материалам, таким как кремний или германий, позволяет протекать отрицательному току.

"Легирование" полупроводниковых материалов другими элементами открыло возможность создания новых типов устройств, способных создавать электрические токи и управлять ими. Однако освоение движения электронов по полупроводниковым материалам, таким как кремний или германий, оставалось далекой мечтой до тех пор, пока их электрические свойства оставались загадочными и необъяснимыми. Вплоть до конца 1940-х годов, несмотря на все усилия физиков, накопленные в Bell Labs, никто не мог объяснить, почему пластины полупроводниковых материалов ведут себя столь загадочным образом.

В 1945 г. Шокли впервые теоретизировал то, что он назвал "твердотельным клапаном", нарисовав в своем блокноте кусок кремния, присоединенный к девяностовольтовой батарее. Он предположил, что если поместить кусок полупроводникового материала, такого как кремний, в присутствии электрического поля, то это может привлечь "свободные электроны", хранящиеся внутри, к скоплению у края полупроводника. Если электрическое поле притягивало достаточное количество электронов, то край полупроводника превращался в проводящий материал, например в металл, в котором всегда имеется большое количество свободных электронов. В этом случае через материал, который до этого вообще не проводил электричество, мог начать протекать электрический ток. Вскоре Шокли построил такое устройство, рассчитывая, что прикладывая и снимая электрическое поле к куску кремния, он сможет заставить его работать как клапан, открывая и закрывая поток электронов через кремний. Однако когда он провел этот эксперимент, то не смог обнаружить никакого результата. "Ничего не поддается измерению", - пояснил он. "Весьма загадочно". На самом деле простые приборы 1940-х годов были слишком неточны, чтобы измерить крошечный ток, который протекал.

Два года спустя двое коллег Шокли из Bell Labs разработали аналогичный эксперимент на другом типе устройств. Если Шокли был гордым и несносным, то его коллеги Уолтер Браттейн, блестящий физик-экспериментатор с животноводческой фермы в сельской местности Вашингтона, и Джон Бардин, ученый из Принстона, ставший впоследствии единственным человеком, получившим две Нобелевские премии по физике, были скромны и мягко воспитаны. Вдохновленные теориями Шокли, Браттейн и Бардин создали устройство, в котором две золотые нити, присоединенные проводами к источнику питания и к куску металла, прикреплялись к блоку германия, причем каждая нить касалась германия на расстоянии менее миллиметра от другой. Днем 16 декабря 1947 года в штаб-квартире Bell Labs Бардин и Браттейн включили питание и смогли контролировать ток, проходящий через германий. Теории Шокли о полупроводниковых материалах оказались верными.

Компания AT&T, которой принадлежала Bell Labs, занималась производством телефонов, а не компьютеров, и рассматривала это устройство, названное впоследствии "транзистором", в первую очередь как полезное для усиления сигналов, передающих телефонные звонки по ее обширной сети. Вскоре стало ясно, что транзисторы могут усиливать ток, поэтому они будут полезны в таких устройствах, как слуховые аппараты и радиоприемники, заменяя менее надежные вакуумные трубки, которые также использовались для усиления сигнала. Вскоре Bell Labs начала оформлять патентные заявки на это новое устройство.

Перейти на страницу:

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Жизнь: зарядное устройство. Скрытые возможности вашего организма
Жизнь: зарядное устройство. Скрытые возможности вашего организма

Стивен Рассел – автор 15 книг, большинство из которых стали бестселлерами, создатель популярного документального сериала для Би-би-си, продолжает лучшие традиции «босоногих докторов», которые бродили по странам Древнего Востока, исцеляя людей от физических и душевных недугов.Стивен Рассел долгое время изучал китайскую медицину, а также китайские боевые искусства, способствующие оздоровлению. Позже занялся изучением психиатрии в поисках способа совместить древние восточные методы и современную науку для исцеления нуждающих.Книги Стивена Рассела до предела насыщены мощными уникальными методиками оздоровления, самопомощи и самовосстановления, ведь его опыт поистине огромен. Вот уже более 20 лет он оказывает целительную помощь своим многочисленным пациентам: ведет частный прием, проводит семинары, выступает на радио и телевидении. Перевод: И. Мелдрис

Стивен Рассел

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Документальное