Тогда перед нами предстает ускоряющая или замедляющая кадрирующая машина мысленного экспериментирования, дающая возможность раскрыть подоплеку того или иного события. При определенных значениях темпорального охвата событий в кадре прорисовывается какая-то иная, недоступная событийная ткань явлений. «Один слой событийной ткани из многоуровневого множества всплывает в фокус, другие уходят в застывший, обрамляющий его сверху и снизу нерельефный фон. Подобным образом с высоты самолета становятся видны крупномасштабные морские волны в их периодическом следовании, которые для пловца внизу вообще неощутимы… Наш замысел – в создании своего рода «макроскопа»
, который позволил бы охватывать виртуальным взором большое число раскинутых во времени событий, «запихивать» их все в один продленный фрагмент настоящего и улавливать таким путем некий новый рисунок событий на более широком полотне происходящего»[654]. В интеллектуальных войнах такого рода кадрирующая машина дает возможность раскрыть стратегический замысел противника, увидеть узор хода событий, вытекающий из этого стратегического замысла. Однако перед этим необходимо проверить наблюдаемые в реальности того или иного события при помощи устройства искусственного интеллекта, чтобы установить его аутентичность.Ведь в современном мире достаточно широко используются «управление восприятием» человека посредством распространения сфабрикованных «документов» о «непроисходивших» событиях
[655], которые используются в «постмодернистских» войнах, поэтому для их выявления требуется применение устройства искусственного интеллекта. Системы искусственного интеллекта построены на распознавании образов, когда можно выявить адекватность или их неадекватность тех или иных образов действительности. Иными словами, необходимо иметь в виду эвристический характер искусственного интеллекта, что прекрасно видно на примере процесса познания. Так, в седьмой книге «Государства» Платон излагает миф о пещере, в котором образно представляет тот мир, в котором мы живем как пещеру, а всех людей – как узников, крепко скованных цепями и сидящих в этой пещере. Узники смотрят на глухую стену, на которую падают отблески света, падающего в пещеру сверху, где находится выход из нее. Глядя на тени, люди устанавливают причины и следствия явлений и таким образом полагают, что познают мир. Но если увидеть истинные причины этих явлений, то окажется, что все познанное на основании отображений не имеет почти никакого отношения к действительности, ведь тени представляют свои первообразы в сильно искаженном виде.В современном мире востребованы автоматические системы
, позволяющие уточнить достоверность источника информации (например, способность отличить ложные факты от действительных, особенно, опубликованные в сети Интернет), преобразовать информацию, представленную на первый взгляд в непонятном виде, в вид понятный для человека и т. д. Как частный случай можно рассматривать задачу идентификации теней. В данной работе будут предложены варианты решений для двух задач: 1) поиск соответствия между тенью и ее первообразом; 2) обнаружение тени, для которой первообраз не существует. Для решения этих задач в качестве классифицирующего устройства целесообразно использовать искусственные нейросети, поскольку они обладают необходимыми свойствами для данной задачи классификации[656]. Среди таких свойств можно выделить обучение и обобщение.Поскольку система распознавания должна работать в реальных условиях, то образ тени, который необходимо классифицировать, будет практически всегда находиться на фоне другого изображения, например, стены с узорами. Таким образом, прежде чем классифицировать оцифрованное изображение, воспринятое, например, видеокамерой, необходимо отделить образ тени от фонового изображения. И на этапе отделения тени от фона, и на этапе классификации выделенной тени можно использовать нейросети прямого распространения (многослойный персептрон). То есть, система будет представлять собой две последовательно включенные нейросети. Первая нейросеть выполняет функцию фильтра, а именно, заменяет узорчатый фон, например, белым фоном. В результате такой фильтрации выполняется удаление избыточной ненужной информации, остается только форма тени, причем вторая нейросеть выполняет функцию классификации полученной тени.
Алексей Юрьевич Безугольный , Евгений Федорович Кринко , Николай Федорович Бугай
Военная история / История / Военное дело, военная техника и вооружение / Военное дело: прочее / Образование и наука