- На миллиметровой бумаге можно добиться довольно большой точности, а для больших чисел придется уже вычислять. Вспомни, как мы вычисляли площадь, ограниченную дугой параболы. Ты ведь и здесь можешь разбить интересующий тебя участок на большое число частей и вычислить (а не измерять непосредственно) сумму площадей соответствующих тоненьких прямоугольников. Это уже можно сделать с любой степенью точности, то есть той, какая понадобится.
Но есть и более удобные способы вычисления логарифмов.
- А какие же логарифмы применяются на самом деле, -спросил Илюша, - натуральные или какие-нибудь другие?
- Натуральные обладают целым рядом преимуществ перед остальными, и в математическом анализе применяются почти исключительно они. Но в практических вычислениях удобнее иметь дело с десятичными, для которых и составлены таблицы.
А если надо перейти от десятичных к натуральным или наоборот, то пользуются модулем перехода, о котором мы уже говорили. Чтобы получить десятичный логарифм, надо натуральный умножить на
M = 0,43429 44809 032518 276511 289189 1660508 2294397 005803 7675761 1445378 ...
- 372 -
Это число называется модулем десятичных логарифмов.
- А нельзя ли десятичные логарифмы получить тоже как площади гиперболических трапеций?
- Конечно, можно. Перемена основания соответствует, как мы уже видели, просто перемене способа измерения площадей. Если ты в качестве единицы для измерения площадей выберешь основную гиперболическую трапецию, простирающуюся от х = 1 до х = 10, то как раз и получишь десятичные логарифмы. Так как единица измерения увеличилась, то площади будут выражаться меньшими числами, то есть десятичные логарифмы будут меньше натуральных, почему и модуль их меньше единицы.
- А почему обычные логарифмы - десятичные, а не какие-нибудь другие?
- Просто потому, что мы пользуемся десятеричной системой счисления.
Древний халдей, вероятно, выбрал бы для основания не десять, а свое любимое число шестьдесят, если бы он додумался до логарифмов. А в десятеричной системе счисления сразу известны логарифмы чисел 10, 100, 1 000, 10 000 и т. д. Они равны 1, 2, 3, 4... Поэтому, умножая какое-нибудь число на десять, сто и так далее, сразу можно сказать, что десятичный логарифм этого числа увеличится на единицу, на два и прочее, а при делении будет наоборот. Это очень облегчает пользование таблицами.
Илюша помолчал минутку.
- Вот что, - произнес он наконец, - мне кажется, что теперь я могу разобраться, почему при помощи логарифмов умножение заменяется сложением. Если взять гиперболическую площадку от х = 1 до х = n, то это будет логарифм числа n. Если к нему рядом приладить еще одну площадку величиной от х = 1 до х = m, то есть логарифм числа га, то, как мы уже делали раньше, придется вторую площадку растянуть от n до nm, удлинив абсциссу в m раз. Значит, тут конечные абсциссы (то есть числа) перемножаются, в то время как площади складываются.
- 373 -
Вот теперь мне, кажется, все ясно. Значит, одно из конических сечений имеет самое тесное отношение к прогрессиям. Как все это связано!
- Вот эта связь различных разделов математики друг с другом и есть величайшая драгоценность нашей науки[27]
.- Как интересно! - воскликнул Илюша. - А скажи, пожалуйста, когда были открыты логарифмы?
- В начале семнадцатого века Джоном Непером, шотландцем.
- А-а! - сказал Илюша. - Вот в чем дело-то! Вот при чем тут шотландский сыр!
- Конечно! Про этого Непера говорили, что он увеличил вдвое продолжительность жизни астронома, потому что с логарифмами можно насчитать вдвое больше, чем без них. Разумеется, нетрудно догадаться, что все, что мы проделали с неделимыми, можно отлично перевести и на современный язык теории пределов, стоит только вместо суммы "неделимых полосок" рассматривать предел суммы бесконечно утончающихся вписанных или описанных прямоугольничков, как мы делали уже в Схолии Пятнадцатой.
- А теперь расскажи еще про гиперболу. Греки определили параболу как геометрическое место. А гиперболу нельзя так определить?
- Можно. И гиперболу и эллипс. В эллипсе есть две весьма замечательные точки. Чтобы показать их тебе, я впишу в конус два соприкасающихся шара: один поближе к вершине конуса, другой подальше. Второй шар будет побольше, первый поменьше. Теперь я просуну между ними секущую плоскость (которая, разумеется, не имеет толщины). Оба шара будут ее касаться в одной точке, если плоскость будет лежать параллельно основанию конуса. И эта точка касания будет центром тон окружности, которая будет сечением конуса этой самой плоскостью. Теперь я начну секущую плоскость наклонять.
Так как шары ее крепко держат, то мы попросим первый шар, который поменьше, потесниться и сделаться немного меньше.