Читаем ВОЛШЕБНЫЙ ДВУРОГ полностью

- Вот именно. И что было делать с этой формулой, как рассудить о ее странностях, долгое время не знали. Пока кубическое уравнение таково, что у него только один действительный корень, выражение под квадратным корнем

(q/2)2 + (p/3)3

больше нуля, и тогда вычисления не так трудны. Но в другом случае - и как будто в самом простом, ибо тогда все три корня действительны! - это выражение становится меньше нуля, и как быть с формулой, неясно. Только через четверть века Рафаэль Бомбелли, последователь Кардана, нашел выход из положения. Начал он, как нередко в таких случаях бывает, с частного случая, с численного примера. Он взял такое кубическое уравнение:

x3 - 15x = 4

Решить его ничего не стоит без всякой формулы... Как вы скажете?

- 437 -

Илюша в ужасе уставился на уравнение. Наконец еле выдавил из себя:

- Четыре в квадрате - шестнадцать, а здесь пятнадцать, а четыре в кубе - шестьдесят четыре... Мне кажется, что решение равно четырем, потому что:

64 - 15•4 = 64 - 60 = 4.

- Вы совершенно правы! - весело воскликнул Мнимий. - Как видите, решить совсем нетрудно. А теперь попробуйте с формулой Кардана. И тотчас получается:

Как тут быть, неизвестно. Из ( + 121), конечно, квадратный корень извлечь небольшая хитрость, но ведь здесь минус.

Однако попробуем переписать теперь это по-нашему:

Из этого выражения Бомбелли получил (как мы теперь пишем!) такие равенства:

Если вы возведете каждое из этих равенств в куб, пользуясь формулой сокращенного умножения, вам хорошо известной, вы убедитесь, что равенства эти справедливы. Поскольку искомый икс равняется сумме этих двух выражений, то мы получаем...

Илюша немедленно написал ответ:

х = (2 + i) + (2 - i) = 2 + 2 = 4.

- Выходит, - решил он, - что искомый корень представился в виде суммы двух сопряженных комплексных чисел, а эта сумма, как мы уж знаем, есть действительное число! Значит, оно только спряталось за мнимыми числами. Но ведь должны быть и другие корни? Их ведь два еще должно быть как будто? Как их найти? Один корень мы нашли, - рассуждал Илюша, - левая часть уравнения должна состоять из трех множителей.

- 438 -

Но из нашего решения ясно, что один из множителей будет равен

(x - 4);

значит, если я перенесу все члены нашего уравнения влево и разделю затем эту левую часть на этот одночлен, получится квадратное уравнение, а из него можно раздобыть остальные два корня:

(x3 - 15x - 4)/(x - 4) = x3 + 4x + 1

Илюша еще немного покопался с вычислениями и написал:

x1 = 4,000; x2 = -2 + √3; x3 = -2 - √3

или приближенно:

х2 = -0,268; х3 = -3,732.

- По теореме Виеты выходит. И сумма корней равна нулю! Попробую проверить значения корней. Для этого я буду придавать иксу целочисленные значения от минус шести до плюс шести и посмотрю, где кривая пересечет ось абсцисс.

Илюша так и сделал. Получилась табличка, а за ней и кривая, которую можно разглядеть на чертеже[38].

xx3-15x

Свободный член

Сумма

-6

-5

4

-3

-2

-1

0

+1

+2

+3

+4

+5

+6

-216

-125

- 64

- 27

- 8

- 1

0

+ 1

+ 8

+ 27

+ 64

+125

+216

+90

+75

+60

+45

+30

+15

0

-15

-30

-45

-60

-75

-90

-4

-4

-4

-4

-4

-4

-4

-4

-4

4

-4

-4

-4

-130

- 54

- 8

+ 14

+ 18

+ 10

- 4

- 18

- 26

- 22

0

+ 16

+122

- 439 -

- Ишь как хорошо вес выходит! - воскликнул Илюша, закончив табличку. - На четверке нуль...

- Сделаешь верно, и получается хорошо, - заметил Радикс.

- А те два других корня по чертежу тоже очень хорошо подходят. В порядке! И действительно, кривая три раза пересекает ось абсцисс.

- Как ей и положено, - закрепил Радикс. - Рафаэль Бомбелли был человек способный, ученый и даже удачливый: говорят, именно ему удалось разыскать на полках громадной Ватиканской библиотеки рукопись творений грека Диофанта Александрийского, с которых и началась теория чисел, высшая арифметика. Возможно, что Диофант в решении с Кардановой формулой навел Рафаэля Бомбелли на кое-какие полезные мысли.

Тут Радикс продекламировал такой стишок:


Вдоль по плоскости криваяОчень правильно бежит,Ось абсцисс пересекая,Где корням быть надлежит!


- Там, где быть им надлежит, там как раз и пробежит! - поддакнул Мнимий.

Радикс проговорил скороговоркой еще стишок:


Как-нибудь уж, в самом деле,Разберемся еле-елеИ рассмотрим все точь-в-точь,Если нам синьор Бомбелли Догадается помочь...


И все весело рассмеялись. А Мнимий добавил:

- Надо вам знать еще, что неожиданные и своеобразные разоблачения Бомбелли в те времена скорее привели в недоумение ученых, чем направили их: к новым исследованиям.

Перейти на страницу:

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература