- Дальше начинается еще сказка, так как Джиния поясняет Мартышке свою мысль новой сказкой, где каждое из действующих лиц, в свою очередь, опять рассказывает по сказке, и так далее, как и полагается у Шехерезады. А что ты скажешь насчет вероятности того, что ни одна душа не получит своих писем?
- Хм... - сказал Илюша. - Я что-то не пойму, как и взяться за эту задачу! Есть три письма и три конверта, значит надо прикинуть, какие могут быть тут комбинации, то есть как вообще можно вложить письма в конверты.
- Правильно.
- Вот я попробую так, - решил Илюша, - сперва отмечу письма тремя буквами (большими), а потом буду переставлять конверты (я их отмечу маленькими буквами).
- Попробуй.
Илюша составил такую табличку:
Слева он поставил номера возможных комбинаций конвертов, а справа - сколько адресатов при данной комбинации конвертов получат свои письма.
- Значит, так, - сказал Илюша, - есть три письма А, Б и В и три конверта а, б и в. Если конверты расположатся при засовывании в них писем наугад так, как это у меня записано под номером первым, то все трое получат свои письма, так как каждая малая буква в этом случае соответствует большой.
Во втором случае только адресат А получит свое письмо, а Б и В не получат, ибо письмо Б засунуто в конверт для В, и наоборот. В четвертом и пятом случаях никто ничего не получит: все конверты перепутаны. Какова же вероятность того, что никто не получит? Всех возможностей шесть, а никто ничего не получает в двух случаях. Значит, вероятность равна двум шестым, или одной третьей. Верно?
- 472 -
- Правильно! Одна треть. Вот мы и нашли ответ на обезьянью задачку. Вопрос этот сейчас исчерпан полностью.
А теперь давай попробуем поговорить на ту же самую тему, только немножко поглубже копнем, куда обезьяна докопаться не сумела бы. Так вот, как ты думаешь: что же станется с этой вероятностью, если число писем, а стало быть и конвертов, начнет возрастать?
Илюша ответит не сразу. Подумав, он сказал так:
- Мне кажется, что она должна увеличиваться.
- Почему?
- Потому что может быть только один случай, когда все письма попадут по адресу, и, значит, вероятность того, что все получат своп письма, будет падать по мере увеличения количества писем, так как и число комбинаций будет расти.
- Это справедливо. Но я тебя спрашиваю не о вероятности того случая, когда все адресаты получат своп письма, а о совершенно противоположном случае, когда никто не получит своего письма, так как все конверты перепутаны, другими словами, когда в твоей табличке ни разу ни одна большая буква не совпадет с маленькой.
Илюша не знал, что ответить.
- А если попробовать для четырех писем? - сказал он.
- Ну что ж! - отвечал Радикс. - Последуем примеру нашей мартышки.
И Илюша составил табличку:
- Ну, кажется, все! - с облегчением сказал Илюша, составив эту длинную таблицу. - Значит, все получат свои письма тоже только в одном случае. Эта вероятность теперь падает от одной шестой до одной двадцать четвертой.
- 473 -
А никто не получит своего письма теперь в девяти случаях. Значит, вероятность этого равна девяти двадцать четвертым, или трем восьмым. А для трех писем получалась одна треть. Можно так написать:
1/3 и 3/8
или 8/24 и 9/24.
Значит, вероятность того, что никто не получит своего письма, немного увеличилась. На одну двадцать четвертую.
- Это, конечно, очевидно. А как ты думаешь, что будет далее, если мы будем еще увеличивать число писем?
- Боюсь сказать, - отвечал Илюша. - Как будто вероятность должна понемножку расти?.. Нет, не знаю!
- Допустим, что она "понемножку" будет расти. А нельзя ли выяснить, как именно будет она расти?
Илюша не знал, что ответить.
- Я могу тебе чуточку подсказать. Если мы возьмем пять писем, то эта вероятность будет сорок четыре сто двадцатых, а если возьмем шесть писем, то она будет двести шестьдесят пять семьсот двадцатых.
- Длинные дроби какие-то. Ничего не поймешь!
- Не торопись, - отвечал Радикс. - Давай обратим внимание на то, сколько всего может быть комбинаций. Тут дело обстоит примерно так же, как с перестановками в Дразнилке.
Помнишь?
- Помню! - обрадовался Илюша. - Для трех было шесть, для четырех - двадцать четыре, для пяти - сто двадцать...
- Для шести?
- Для шести - семьсот двадцать... Постой-ка! Ведь в тех дробях, которые ты мне только что назвал, знаменатели тоже точь-в-точь такие же?
- Вот то-то и дело! Ну-ка, поворачивай мозгами!
- Назови мне опять эти дроби, я их запишу.
1/3, 3/8, 44/120, 265/720
- Приведу-ка я их к одному знаменателю, - решил Илюша.
240/720, 270/720, 264/720, 265/720
Долго он смотрел на то, что получилось, и наконец Радикс объяснил ему:
- 474 -