Читаем Волшебный двурог полностью

— Дело не в том, что нам «понятно», — продолжал Радикс, — и какого мы «мнения» о явлениях, а в том, каковы законы этих явлений! А ведь они существуют сами по себе, мы можем только изучать их, но не навязывать явлениям наши «мнения». Мне достаточно того, что я устанавливаю, что в природе имеются не только зависимости пропорционального характера. Хорошо, если ты можешь сразу ответить на вопрос «почему?». А ведь есть немало случаев, когда это не так легко сделать. Например, на лодке установлен моторчик в 1,25 лошадиной силы, и лодка идет со скоростью восемь километров в час. Можно ли утверждать, что если я поставлю на эту лодку мотор в десять сил, то лодка помчится, как скорый поезд, и будет делать шестьдесят четыре километра в час? Нет, этого утверждать нельзя. Чтобы увеличить скорость в n раз, надо мощность увеличить примерно в n3 раз, а чтобы достичь такой скорости, придется обзавестись мотором не в десять, а в шестьсот сорок сил, тогда как десятисильный мотор даст только удвоенную скорость. Еще пример: ты без всякого труда можешь закинуть спортивный диск весом в восемьсот граммов на восемнадцать шагов. Но можно ли из этого вывести, что более легкий диск, в двадцать граммов весом, ты закинешь со-

— 339 —

гласно тройному правилу на семьсот двадцать шагов, то есть без малого на полкилометра? Разумеется, это сплошная ахинея, ибо такой очень легкий предмет далеко не забросишь, а уж о полкилометре смешно и говорить даже. Нередко исследователь вовсе и не задается вопросом «почему?». Очень хорошо, если он может ответить на вопрос «как?». Мы не знаем, что такое тяготение, но отлично знаем, как оно действует, и поэтому можем вычислить и траекторию артиллерийского снаряда, и толщину фундамента для большого здания, и многое другое. На этот вопрос Галилей дал совершенно точный ответ для случая падения тел. Надо еще принять во внимание то, что открытия Кеплера и Галилея связали воедино механику с геометрией, то есть как раз такие две науки, которые греки как бы противопоставляли одну другой. А вскоре выяснилось, что метод касательных имеет непосредственное отношение к бесконечно малым.

— Вот как! — сказал Илюша. — Как же это получилось?

— Дело вот в чем, — отвечал Радикс. — Давай-ка нарисуем кривую и проведем секущую. Она пересечет кривую на чертеже два раза — в точках А и Б. Дальше мы будем рассуждать так. Наша кривая связывает две величины — х и у. Их мы будем называть переменными: икс — независимой переменной, а игрек — зависимой. Ведь действительно, вспомни, как мы подставляли в уравнения различные произвольные значения икса и следили за изменением игрека. Значит, в самом деле игрек изменяется в зависимости от икса. Или, как принято говорить, игрек есть функция икса.

Если заставить точку В двигаться по кривой АВ к точке А, то секущая ABF, поворачиваясь около точки А, будет приближаться к некоторому предельному положению, когда бесконечно малое расстояние между точками А и С обратится в нуль; в этот миг секущая превратится в касательную.


Теперь заметим, что в точке А икс равен, допустим, некоторой величине ха, а игрек соответственно равен уa. Теперь увеличим немного икс, то есть дадим ему некоторое приращение. Тогда икс, соответственный точке В, будет равен хb, а игрек соответственно уb. Приращение икса будет равно x xa; приращение игрека yb yа — Проведем теперь секущую через точки

— 340 —

А и В. Если теперь поворачивать секущую около точки А по часовой стрелке, то в пределе она станет касательной. Построим треугольник ABC и рассмотрим, что с ним будет делаться, если поворачивать секущую около точки В. Очевидно, стороны треугольника убывают.

tg α называется производной «ординаты кривой по абсциссе» в точке с абсциссой xa


Уменьшается сторона АС, а вместе с ней и сторона ВС, то есть уменьшается приращение той и другой переменных и уменьшается непрерывно. В рассматриваемых здесь случаях отношение АС и ВС стремится к некоторому пределу, а секущая занимает свое предельное положение относительно кривой, то есть становится касательной. Когда АС бесконечно уменьшается, то и ВС уменьшается таким же образом. Обе эти переменные бесконечно уменьшающиеся приращения величин суть бесконечно малые, и нам тут необходимо найти предел, к которому стремится их отношение. Очевидно, что оно будет равно тангенсу угла, который образует касательная с положительным направлением оси абсцисс. Этим вопросом занимается дифференциальное исчисление; и тангенс наклона касательной к положительному направлению оси абсцисс называется производной данной функции. Зная производную той или иной функции, узнают, с какой скоростью изменяются ординаты кривой при изменении абсцисс, и можно изучить эту скорость. А этим способом исследуют очень- многие законы физики, механики и других естественных наук. На этом фундаменте и выросла наша современная техника.

— Это замечательно! — воскликнул Илюша. — Только я не пойму: к какой кривой приводит тот или иной закон физики?

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки