Читаем Волшебный двурог полностью

которой и пользуется Гиппократ. Теперь возвращаюсь к построению: циркуль дает одну среднюю пропорциональную, которую мы разбирали в Схолии Пятнадцатой, тогда как два прямых угла действуют словно два объединившихся циркуля, они дают нам разом две средних, как это ясно из другого чертежа. Прямой угол мы всегда можем себе представить опирающимся на диаметр некоторой окружности, не так ли?.. А если у нас имеются два прямых угла, причем их всегда можно сдвигать и раздвигать так, что эти диаметры воображаемых окружностей могут изменяться (и при этом независимо друг от друга), то мы получаем особый прибор вроде двоякого циркуля, который может дать нам сразу две средние пропорциональные, те самые, которые требуются для пропорции Гиппократа.

Принцип прибора Платона.


— 429 —

— По-моему, — сказал Илья, внимательно осмотрев чертежи Радикса, — как будто все правильно. Какой интересный этот способ двух прямых углов! И если а = 1, то икс и будет корнем кубическим из двух. Все верно.

— Прекрасно! — похвалил Мнимий. — Итак, после этого поучительного примера я могу продолжать свой рассказ. Алгебра дала ученым формулу (а формула — это ведь и есть самое значительное завоевание алгебры!) для решения любого квадратного уравнения. В шестнадцатом веке ученые заинтересовались алгебраическим решением кубического уравнения, о котором еще в начале того же века Лука Пачиоли, итальянец, говорил, что эта задача столь же непосильна для науки, как и квадратура круга. Конечно, надо все-таки принимать во внимание, что наука, развиваясь, ставит себе все более и более сложные задачи, а для их разрешения, понятно, требуются все более сложные способы. Вот с одной такой необычайной сложностью ученые и столкнулись в шестнадцатом веке. Понадобилось без малого триста лет, чтобы разгрызть этот орешек! О нем-то и будет идти речь. Задачка была особенная. Древние почти ничего здесь не сделали, европейцам все пришлось изучать и рассматривать заново. Арабы тоже брались за этот вопрос, старательно изучали частные случаи, многое изучили и придумали, но по части именно алгебраической у них не получилось. Пачиоли прямо говорил, что решение таких уравнений невозможно, ибо они «диспропорциональны», то есть невыразимы с помощью пропорций, что, разумеется, неосновательно, как это ясно из Гиппократова решения задачи о двоекубии. Как неосновательны были и сетования Пачиоли насчет квадратуры круга, но Архимед тогда еще очень был мало известен… И, наконец, в городе Болонье в шестнадцатом веке напали на алгебраическое решение. Оно…

— А какое это было решение?

— А вот сейчас его продемонстрируем. Сперва надо сказать еще несколько слов об одном особом способе решать квадратные уравнения, вам хорошо известные. Вы знаете способ, который построен на выделении точного квадрата. Но можно действовать еще и по-иному. Выходит не хуже. Если уравнение представлено в двучленной форме, то есть вот так:

xn = a

то решить его нетрудно (разумеется, мы полагаем, что а больше нуля, то есть положительное число), какова бы ни была его степень. Надо только извлечь корень данной степени, а это вопрос разрешимый…

— 430 —

— С логарифмами… — подсказал Илюша.

— Точно, — отвечал Мнимий, — именно с логарифмами. Следовательно, если мы сумеем данное уравнение привести к такому виду, мы уже никаких особых препятствий не встретим. Уравнение первой степени приводится к двучленному виду проще простого: сделай приведение, перенеси известные в одну сторону, неизвестные в другую — и готово. Посмотрим теперь, как этого достигнуть с квадратным уравнением, которое нам тоже хорошо знакомо. Любое квадратное уравнение можно представить в таком виде:

х2 + рх + q = 0,

ибо, если коэффициент при х2 не равен единице, делим вес уравнение на этот коэффициент — и дело в шляпе! Как быть далее? А что, если уничтожить второй член уравнения с иксом в первой степени? Тогда останется икс в квадрате и свободный член, а нам как «раз и надо получить двучленное уравнение. Введем новую неизвестную, допустив, что наш икс таков:

x = y + h.

— А что такое h? — с удивлением спросил Илюша.

— Пока что h совершенно произвольное число, но мы сейчас выясним точно, в каком виде оно может нам помочь. Подставим в уравнение новое значение икса и сделаем приведение. Это нетрудно! Получаем:

(y + h)2 + p (y + h) + q = 0;

y2 + y(2h + p) + h2 + hp + q = 0.

Теперь становится ясно: чтобы уничтожить второй член уравнения, надо положить, что коэффициент при иксе в первой степени равен нулю, то есть:

2h + р = 0;

h = — p/2

Подставим в полученное уравнение. Получаем:

y2 + y(—2p/2 + p) + p2/4 — p2/2 + q;

после приведения:

y2 = p2 / 4 — q

— 431 —

по так как х + у = h, то находим и решение:

x = — p/2 ± √(p2/4 — q)

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки