Следовательно, наш этот способ — уничтожить один из членов уравнения — вполне целесообразен. Теперь попробуем разобрать, как было решено впервые алгебраически, или, как говорится, «в радикалах», то есть с помощью извлечения корней необходимой степени, кубическое уравнение. Сделано было это в шестнадцатом веке в Италии учеными города Болоньи Ферро, Тарталья и Кардано. Между двумя последними шел долгий спор о том, кто первый сделал это открытие, но мы в эти ненужные споры забираться не будем, тем более что с современной точки зрения все решение не так уж сложно.
— А все-таки, наверно, трудно… — грустно заметил Илюша.
— Не очень! Конечно, поскольку само кубическое уравнение сложнее квадратного, то весь ход решения похитрей. Но тут дело в том, что выясняются некоторые особые подробности… Итак, у нас имеется кубическое уравнение, где коэффициент при старшем члене уже превращен в единицу:
Цель снова будет та же самая: придумать такие преобразования, чтобы превратить данное уравнение в уравнение с меньшим числом членов, ибо, как мы видели на примере квадратного, этот прием упрощает задачу. Сперва мы будем поступать так же, как с квадратным уравнением. Положим снова:
и подставим это в наше уравнение. Получим после небольших переделок
Теперь снова постараемся обратить коэффициент второго члена (при игреке в квадрате) в нуль, то есть положим, что
(3
откуда
— 432 —
или, сделав приведение:
Теперь для сокращения письма положим:
(—
и запишем окончательно результат в таком виде:
(Если
При
И опять-таки эти величины ими пока что совершенно произвольные. Мы только одно можем сказать, что сумма их есть корень нашего уравнения, который не равен нулю.
— А почему он не равен нулю?
— Сейчас рассмотрим! Попробуем подставить. Получаем:
(
Смотрите-ка! Теперь видно, что сумма (
(
Такая форма уравнения уже подает нам некоторые надежды! Может быть, нам удастся уничтожить второй член? Положить,
— 433 —
что
3
но в таком случае наше уравнение превращается в такое:
Следовательно, мы получили два уравнения. Одно из них дает произведение новых чисел u
и v, а другое их сумму. Правда, они в разных степенях, но никто не помешает возвести это произведение тоже в куб. Далее это создаст нам некоторые затруднения, но мы как-нибудь их одолеем. И вот перед нами два уравнения:А теперь скажите, юноша, как бы вы дальше поступили с этими уравнениями? Отвечайте, куда они просятся?
— В квадратное уравнение! — вдруг выпалил почти в отчаянии Илюша. — Сумма и произведение даны, значит, это квадратное уравнение… по теореме Виеты.