Читаем Волшебный двурог полностью

Следовательно, наш этот способ — уничтожить один из членов уравнения — вполне целесообразен. Теперь попробуем разобрать, как было решено впервые алгебраически, или, как говорится, «в радикалах», то есть с помощью извлечения корней необходимой степени, кубическое уравнение. Сделано было это в шестнадцатом веке в Италии учеными города Болоньи Ферро, Тарталья и Кардано. Между двумя последними шел долгий спор о том, кто первый сделал это открытие, но мы в эти ненужные споры забираться не будем, тем более что с современной точки зрения все решение не так уж сложно.

— А все-таки, наверно, трудно… — грустно заметил Илюша.

— Не очень! Конечно, поскольку само кубическое уравнение сложнее квадратного, то весь ход решения похитрей. Но тут дело в том, что выясняются некоторые особые подробности… Итак, у нас имеется кубическое уравнение, где коэффициент при старшем члене уже превращен в единицу:

х3 + ах2 + + с = 0.

Цель снова будет та же самая: придумать такие преобразования, чтобы превратить данное уравнение в уравнение с меньшим числом членов, ибо, как мы видели на примере квадратного, этот прием упрощает задачу. Сперва мы будем поступать так же, как с квадратным уравнением. Положим снова:

х = у + h

и подставим это в наше уравнение. Получим после небольших переделок

у3 + (3h + а) у2 + (3h2 + 2ah + b) у + h3 + ah2 + bh + с = 0.

Теперь снова постараемся обратить коэффициент второго члена (при игреке в квадрате) в нуль, то есть положим, что

(3h + a) = 0; h = — a/3,

откуда

у3 + (—3a/3 + а) у2 + (3a2/9 — 2a2/3 + b) у + h3 + ah2 + bh + с = 0.

— 432 —

или, сделав приведение:

у3 + (—a2/3 + b) у + (2a3/27 — ab/3 + с) = 0.

Теперь для сокращения письма положим:

(—a2/3 + b) = p; (2a3/27 — ab/3 + с) ] = q

и запишем окончательно результат в таком виде:

y3 + py + q = 0.

(Если q = 0, то все просто: y1 = 0, у2,3 = ±√—p)

При q ≠ 0 результат, как ты видишь, разумеется, несколько менее утешителен, чем в случае квадратного уравнения, ибо у нас не два, а три члена. Но как-никак определенное упрощение достигнуто. Как же теперь быть далее? Ясно, что нужно придумать способ, который дал бы возможность обратить выражение ру в нуль, после чего мы и получим двучленное уравнение, то есть то же самое, что было получено для квадратного. И вот как раз на этом месте болонцам пришла в голову счастливая мысль сделать еще одну подстановку: положить, что у в последнем уравнении можно представить в виде суммы:

у = u + v.

И опять-таки эти величины ими пока что совершенно произвольные. Мы только одно можем сказать, что сумма их есть корень нашего уравнения, который не равен нулю.

— А почему он не равен нулю?

— Сейчас рассмотрим! Попробуем подставить. Получаем:

(u + v)3 + р (u + v) + q = 0.

Смотрите-ка! Теперь видно, что сумма (u+ v) не может быть равна нулю, потому что тогда и число q будет равно нулю, а число q, свободный член уравнения, не равно нулю. Теперь откроем скобки и кое-что сгруппируем:

(u3 + v3) + (u + v) (3uv + p) + q = 0.

Такая форма уравнения уже подает нам некоторые надежды! Может быть, нам удастся уничтожить второй член? Положить,

— 433 —

что u + v = 0, мы, как сказано, не можем, но зато спокойно можем допустить, что

3uv + р = 0;

uv = —p/3

но в таком случае наше уравнение превращается в такое:

u3 + v3 = — q.

Следовательно, мы получили два уравнения. Одно из них дает произведение новых чисел u и v, а другое их сумму. Правда, они в разных степенях, но никто не помешает возвести это произведение тоже в куб. Далее это создаст нам некоторые затруднения, но мы как-нибудь их одолеем. И вот перед нами два уравнения:

u3v3 = — p3/27; u3 + v3 = — q.

А теперь скажите, юноша, как бы вы дальше поступили с этими уравнениями? Отвечайте, куда они просятся?

— В квадратное уравнение! — вдруг выпалил почти в отчаянии Илюша. — Сумма и произведение даны, значит, это квадратное уравнение… по теореме Виеты.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки