И вдруг перед Илюшей, откуда ни возьмись, появился старинный том, на переплете которого было вытиснено золотыми буквами: «Решения и постановления Парижской Академии Наук за 1775 год». Кинга открылась, несколько страниц перевернулось, и Илюша прочел:
«Академия постановила: отныне и впредь не рассматривать представляемых ей разрешений задач удвоения куба, трисекции угла, квадратуры круга, а также машин, долженствующих осуществить вечное движение».
— Вот что, друг любезный, — вымолвил довольно сурово встретивший его Радикс, — имей в виду, что у нас здесь очень не любят, когда люди, плохо знакомые хотя бы с тем, что в теории чисел называется «арифметикой целых алгебраических чисел», и с тем, какие возникают затруднения при рассмотрении делимости на «алгебраические числа», начинают заглядываться на теорему Ферма. И не следует так быстро решать, что ты будешь делать в областях, которые тебе пока еще очень мало известны. А насчет теоремы Ферма надобно быть особо осторожным. Дело в том, что формулировка этой теоремы очень проста, и на первый взгляд неопытному человеку кажется, что и вся проблема проще простого, что надо только не быть «ученым педантом» и обладать в небольшой степени тем, что именуется «здравым смыслом», чтобы разобраться и покончить со всей проблемой одним махом. В дальнейшем ты и сам увидишь, что на свете существует немало задач, которые очень просто формулировать, но которые отнюдь не просто решить, и что никакой связи между простотой формулировки задачи и простотой ее решения не имеется. Укажу тебе еще вот на какое обстоятельство. Я совершенно уверен, что ты забрался в эту книжку главным образом для того, чтобы в дальнейшем ознакомиться с другими, более трудными книжками…
— 95 —
— Да-да! — перебил его Илюша. — Конечно! Вот из-за этого-то…
— Хорошо, — спокойно отвечал ему Радикс. — Я понимаю это. И вполне тебе сочувствую. Но имей в виду, что когда ты доберешься до этих более трудных книжек, то очень скоро убедишься, что в теории чисел, науке вообще очень трудной, существуют уже решенные задачи — кстати сказать, тоже на первый взгляд не очень сложные, — но разобраться в том, как они решаются, и усвоить, какова основная идея решения, может только человек с куда более основательной, подготовкой, чем у тебя, и то не сразу, а после долгих и упорных трудов, измеряемых для отдельного случая не часами, а неделями. Осмелюсь тебе еще доложить, что на свете было, есть и будет несметное число всяких бездельников, которые отравляют жизнь настоящим ученым, заваливая их своими творениями по вопросу о квадратуре круга и доказательствами теоремы Форма и требуя не только внимания и помощи, но и тысячных премий, и поднимают дикие вопли о бесчеловечности, когда их просят по-хорошему не приставать с чепухой и отвязаться. Я, конечно, не думаю, чтобы ты в будущем пристал к этому стаду, потому что сам видел сейчас, что эту задачу голыми руками не возьмешь, но все-таки, дружок, надо быть поосторожнее! Ты должен понять вот что, милый друг: если ты подходишь к теореме Ферма всерьез, как подобает ученому, то надлежит вооружиться всеми средствами современной науки, иначе ничего не сделаешь. А чудаки, которые надеются одолеть ее с помощью элементарных средств, напоминают того дурачка, который, увидав в первый раз телескоп, наведенный на луну, решил, что только заведомые глупцы могут пользоваться таким сложным аппаратом, а он, умник, поступит попроще: просто сколотит большую деревянную лестницу, залезет на небо, достанет оттуда луну, поставит ее к себе на стол, разглядит и всем желающим расскажет. Вот как!
— 96 —
Схолия Седьмая,
где Илюша открывает еще кое-что насчет обычаев и нравов веселого карликового народца, у которого он был в гостях, и, в частности, узнает о том, как можно натянуть нос одному неуклюжему существу, причем натягивание это мнимое, а нос-то получается совершенно вещественный. После этого наш герой пытается играть с зеркалом в «Дразнилку», а затем наши добрые друзья встречаются с тремя недогадливыми испанцами и тремя храбрыми дипсодами, то есть людьми из Страны Жаждущих (которая подробно описана в знаменитой истории Гаргантюа и Пантагрюэля, неутомимых острословов, великанов и мудрецов). И только благодаря этой встрече Илюша узнает, сколько врагов надо уложить, когда на тебя нападают со всех сторон, ибо до сих пор он думал, что сторон в три раза меньше, чем это оказывается на самом деле. Тут же выясняется, почему любители чужого добра вдруг становятся такими кроткими, когда им растолкуют наконец, какие симпатичные треугольнички для них приготовлены в царстве ВОЛШЕБНОГО ДВУРОГА.
Илюша и Радикс продолжали свой путь в самом приятном расположении духа. Однако через несколько времени Илюша задумчиво промолвил:
— Эх! Я забыл спросить у этого человечка еще одну штуку.
— Что именно? — вопросил Радикс.
— 97 —