Читаем Воображаемая жизнь. Путешествие в поисках разумных инопланетян, ледяных существ и супергравитационных животных полностью

На маленьких планетах, вроде Марса, большую роль играет диссипация атмосферы. Вот как происходит этот процесс: составляющие атмосферу молекулы постоянно находятся в движении, и чем выше температура атмосферы, тем быстрее они движутся. Однако при любой температуре всегда будут молекулы, чья скорость превышает среднюю скорость всех молекул, и молекулы, движущиеся медленнее большинства. И если более быстрые молекулы наберут достаточно большую скорость и случайно направятся вертикально вверх, они могут преодолеть гравитационное притяжение планеты и улететь в космос.

Чем больше планета, тем больше сила ее притяжения и тем легче ей удерживать свою атмосферу. К примеру, чтобы оторваться от Земли, молекуле придется лететь со скоростью примерно в 11 км/с. Кроме того, тяжелые молекулы труднее разогнать до большой скорости, чем легкие. А это значит, что более легким молекулам проще, чем тяжелым, покинуть планету в процессе диссипации. Земля, например, потеряла довольно значительную часть своих первоначальных запасов водорода и гелия – самых легких составляющих своей атмосферы, – в то время как Марс покинули даже более тяжелые газы, например кислород или азот.

Связанный с диссипацией механизм потерь – фотодиссоциация, особенно сильно влияет на молекулы воды. Если на поверхности планеты есть вода, в ее атмосфере будет водяной пар. Ультрафиолетовое излучение материнской звезды разрушит те молекулы воды, которые окажутся в верхних слоях атмосферы планеты. Образовавшийся вследствие этого водород тут же уйдет в космос из‐за гравитационной диссипации, а кислород соединится с атомами на поверхности планеты, образуя оксиды различных минералов. Есть гипотеза о том, что именно так Марс лишился океана, который существовал на его поверхности на заре истории планеты. А красный цвет поверхности Марса – итог окисления (коррозии) железа, входящего в состав каменных пород на поверхности планеты.

Крупные изменения происходят и с углекислым газом – одним из наиболее распространенных (наряду с водяным паром) парниковых газов в земной атмосфере. При каждом извержении вулкана на Земле углекислый газ высвобождается из глубин мантии и вырывается в атмосферу. В ходе сложного процесса, называемого глубоким углеродным циклом, углекислый газ попадает в океаны, где вступает в реакцию с различными веществами, вроде известняка, после чего может, кроме всего прочего, вернуться в недра Земли. Таким образом, глобальные геологические процессы, происходящие на планете, могут влиять на количество углекислого газа в ее атмосфере, а уже оно, в свою очередь, влияет на температуру планеты. Мы полагаем, что океаны, существовавшие на поверхности Венеры на ранних стадиях ее развития, должны были испариться из‐за высокой температуры планеты – следствия ее близости к Солнцу. Таким образом в ее атмосфере продолжал накапливаться ничем не устраняемый углекислый газ, и в отсутствие глубокого углеродного цикла на планете произошло катастрофическое увеличение количества парниковых газов в целом – явление, которое мы называем неуправляемым парниковым эффектом.

Эти примеры показывают нам, что изменения в атмосферах экзопланет – невидимые и неразличимые для нас на нынешнем уровне развития астрономических приборов – могут иметь решающее значение для возможности зарождения жизни на этих планетах. Пример подобного влияния – планета, находящаяся в зоне обитания своей звезды, но обладающая крайне малыми запасами воды, – на ней легко может возникнуть неуправляемый парниковый эффект, и она станет похожа на современную Венеру. При этом на большом расстоянии определить, произошло с ней что‐то подобное или нет, будет очень и очень трудно.

<p>Разумная жизнь и технический прогресс</p>
Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука