Но на самом деле этот вопрос отсылает нас к знаменитой проблеме из элементарной теории вероятностей, который известен также как «парадокс мальчика или девочки». Вот как он звучит: если в семье двое детей и один из них мальчик, какого пола второй ребенок – мужского или женского? Интуитивно вы понимаете, что раз примерно половину детей в мире составляют мальчики, а половину – девочки, то верным может оказаться любой из двух вариантов. И тут в дело вступает удивительная теория вероятностей.
Согласно принципу большей вероятности, второй ребенок должен быть девочкой – шансы на это равны двум к одному (чуть позже я объясню почему). Вероятность того, что любой отдельно взятый ребенок окажется либо мальчиком, либо девочкой, примерно одинакова. Но если включить в ситуацию еще одного ребенка, то она полностью изменится, и ответ на заданный вопрос может оказаться для вас неожиданным.
Математика вероятностей – это огромное научное достижение ХХ века, которое оказало беспрецедентное влияние на нашу жизнь. Ее важность состоит в том, что она позволяет исследовать – а порой и предсказывать – случайности, шансы и цепочки не связанных между собой событий. Через свою прикладную отрасль, статистику, математика вероятностей проникает в самые разнообразные сферы нашей жизни, от прогнозов погоды и предсказания наводнений до расчета безопасности новых лекарств или флуктуаций на финансовом рынке.
Традиционная, ньютоновская математика – это математика точности, наука о регулярных повторениях в природе. Математика вероятностей изучает нестабильность и неравномерность природных явлений. Якоб Бернулли в 1713 году блестяще охарактеризовал ее как «искусство предположений»: «Мы определяем искусство предположений, или стохастическое искусство, как искусство точной оценки вероятностей с тем, чтобы в наших суждениях и действиях мы всегда опирались на то, что признано лучшим, наиболее приемлемым, наиболее определенным или рекомендуемым; это единственная основа для мудрости философа и благоразумия государственного мужа».
Математика вероятностей – более сложный и точный способ делать то, что каждый из нас выполняет постоянно и бессознательно. Любой человек пытается понять окружающий мир, замечает в нем повторения, сходства и различия, равномерность и неравномерность. Проводя подобные мыслительные операции, мы обнаруживаем ситуации, которые нас пугают, а также вещи, которые могут сделать нашу жизнь лучше.
В своем самом простом виде математика вероятностей заключается в вычислении процентного шанса того, что при падении монетки выпадет орел или решка или что вы сможете выбросить на одном кубике шестерку три раза подряд (подсказка – вот тут шанс очень невелик). В самом сложном своем выражении математика вероятностей используется при построении теоретических моделей: как изменится мировой климат, если выбросы углерода в атмосферу увеличатся, или каковы шансы, что существует еще одна вселенная, в которую человечество сможет сбежать, когда в этой станет слишком жарко.
Ценность теории вероятностей в том, что она позволяет предсказать будущие события на основании происходившего в прошлом или в иных обстоятельствах. Она не дает точных ответов, но информация о существующих шансах все равно очень важна, так как она резко повышает эффективность принимаемых нами решений.
Но может ли теория вероятностей предсказать, кто родится у вашей жены – мальчик или девочка? На этот счет у математиков есть такое мнение: если мы знаем, что один из двух детей в семье – девочка, то, очевидно, второй из них, скорее всего, будет мальчиком. Для семьи с двумя детьми существует четыре варианта развития событий:
• девочка и девочка;
• мальчик и девочка;
• девочка и мальчик;
• мальчик и мальчик.
Так как мы уже знаем, что один из детей – девочка, то можем отбросить комбинацию «мальчик и мальчик». Соответственно, у нас остается три варианта:
• девочка и девочка;
• мальчик и девочка;
• девочка и мальчик.
Судя по всему, только в одном случае из трех существует шанс, что у вас родится вторая дочь. Иными словами, в семье с двумя детьми имеется в два раза б
Однако подобные попытки предсказать пол ребенка очень четко показывают нам ошибочность такого способа мышления и то, как легко промахнуться, рассуждая о вероятностях. С одной стороны, ваша маленькая дочь может понимать, что, по логике парадокса, раз уж она родилась девочкой, следующий ребенок в вашей семье должен быть мальчиком. С другой стороны, если задуматься об этом на мгновение, мы осознаем, что вероятных сценариев не может быть больше двух – ведь родится либо мальчик, либо девочка, и третьего варианта не дано. Таким образом, шансы равны, и, даже если бы ваша маленькая дочь умела пользоваться теорией вероятностей, она не смогла бы точно предсказать будущее с ее помощью.