Что насчет силы отбора? Интроны могут оказаться важны и здесь. Классический отбор, который действует на современные организмы, благоприятствует половому размножению: оно позволяет спасаться от паразитических инфекций и приспосабливаться к изменяющимся условиям. Но и с учетом этого отбор должен быть сильным, чтобы половое размножение стало выгоднее бесполого. Например, чтобы половое размножение получило селективное преимущество, паразиты должны быть очень широко распространены и сильно вредить. Несомненно, это верно и в отношении ранних эукариот, но им к тому же приходилось противостоять вторжению интронов – паразитических генов. Каким образом мобильные интроны могли способствовать появлению полового размножения? Дело в том, что рекомбинация по всему геному повышает многообразие: появляются клетки с неудачно расположенными интронами и другие, у которых интроны стоят на менее опасных местах. Затем естественный отбор оставляет лучшие варианты. Рекомбинация же при горизонтальном переносе лишь частична и не может обеспечить все многообразие вариантов, когда одна часть клеток очищает свои гены, а другая собирает большую долю мутаций. В великолепной книге “Демон Менделя” Марк Ридли проводит параллель между половым размножением и путем избавления от грехов, описанным в Новом завете: Христос умер, приняв на себя грехи человечества. Половое размножение также позволяет повесить все мутации, накопившиеся в популяции, на козла отпущения, а затем распнуть его.
Степень вариации между клетками также может быть связана с интронами. Археи и бактерии, как правило, имеют единственную кольцевую хромосому, а эукариоты – многочисленные линейные хромосомы. Почему? Из-за интронов. Когда они встраиваются и вырезаются из генома, могут возникать ошибки. Если у них не получается соединить обратно два конца хромосомы после автосплайсинга, в хромосоме остается разрыв. Одиночный разрыв в кольцевой хромосоме дает линейную хромосому, а несколько разрывов дают несколько линейных хромосом. Таким образом, из-за ошибок рекомбинации, вызванных мобильными интронами, у ранних эукариот могли появиться линейные хромосомы.
Из-за этого у эукариот должны были возникнуть серьезные проблемы с клеточным циклом. У разных клеток могло быть разное количество хромосом, и каждая имела собственный набор мутаций и делеций. К тому же ранние эукариоты могли приобретать новые гены и ДНК от своих митохондрий. Ошибки репликации, несомненно, могли приводить к дупликации хромосом. Трудно себе представить, чем в таких условиях мог помочь горизонтальный перенос генов. Но характерный для бактерий стандартный механизм рекомбинации – выстраивание хромосом друг относительно друга и включение в геном недостающих генов – должен был обеспечить накопление клетками новых генов и признаков. И лишь половое размножение позволяло обзаводиться работающими генами, при этом избегая прочих. Приобретая новые гены и ДНК в ходе полового процесса и рекомбинации, геномы ранних эукариот со временем расширялись. Накопление генов должно было отчасти решить проблемы генетической нестабильности, а наличие митохондрий со всеми его энергетическими выгодами спасало ранних эукариот от “энергетического штрафа” – в то время как бактериям приходилось его платить. Конечно, все это предположения, но математическое моделирование позволяет выбрать наиболее правдоподобные.
Как клетки физически разделяли свои хромосомы? Ответ можно найти в механизмах, которые бактерии применяют для разделения крупных плазмид – мобильных “кассет” с генами, отвечающими за определенный признак – например устойчивость к антибиотикам. При делении бактерий большие плазмиды обычно отделяются друг от друга при помощи структуры из микротрубочек, которая напоминает веретено деления эукариот. Очень вероятно, что ранние эукариоты позаимствовали механизмы разделения плазмид, чтобы отделять друг от друга свои многочисленные и разнообразные хромосомы. Таким способом делятся не только плазмиды: некоторые виды бактерий, похоже, разделяют свои хромосомы при помощи относительно динамичных веретен, а не используют, как обычно, клеточную мембрану. Может быть, детальное изучение мира прокариот позволит найти корни физического механизма разделения хромосом в митозе и мейозе.