Вся жизнь на Земле хемиосмотична. Все организмы используют энергию протонных градиентов на мембранах, чтобы осуществлять углеродный и энергетический метаболизм. Мы рассмотрели возможное происхождение этого своеобразного свойства и последствия обладания им. Мы увидели, что для поддержания жизни нужна непрестанно действующая движущая сила – непрекращающаяся химическая реакция, в результате которой образуются активные промежуточные соединения, например АТФ, и побочные продукты. Такие молекулы обеспечивают осуществление энергоемких реакций, которые позволяют клеткам существовать. На заре жизни (до появления биологических катализаторов, упорядочивших течение метаболизма и направивших его по четко определенным, узким каналам) поток углерода и энергии, вероятно, был еще мощнее. Очень немногие природные условия отвечают требованиям жизни: необходим постоянный интенсивный поток углерода и доступной для использования энергии через минеральные катализаторы – поток, направляемый при помощи природной системы микрокомпартментов, которая предоставляет возможность концентрировать продукты и вымывать отходы. Быть может, существуют и другие природные среды, отвечающие этим критериям, но щелочные гидротермальные источники соответствуют им идеально. К тому же такие источники, скорее всего, нередки на влажных скалистых планетах по всей Вселенной. Список необходимого для жизни в источниках состоит лишь из трех пунктов: оливин, вода и CO2
(широко распространенные во Вселенной вещества). Подходящие для возникновения жизни условия в одном только Млечном Пути должны иметься хотя бы на некоторых из 40 млрд планет[109].Щелочные гидротермальные источники представляют собой одновременно и задачу, и ее решение: они богаты водородом, но этот газ с трудом реагирует с CO2
. Мы выяснили, что природные протонные градиенты на тонких полупроводниковых минеральных перегородках теоретически могли запустить образование органических веществ и, в конечном счете, привести к возникновению клеток внутри пор гидротермальных источников. Если это действительно так, то жизнь с самого начала была зависима от протонных градиентов (и железосерных минералов), необходимых для того, чтобы преодолеть кинетический барьер реакции между H2 и CO2. Чтобы существовать, используя естественные протонные градиенты, древнейшим клеткам требовались проницаемые мембраны, которые бы позволяли удерживать внутри необходимые молекулы и при этом не лишать себя живительного потока протонов. Поэтому у них остался лишь один способ покинуть источник: путем прохождения определенных событий с четкой последовательностью (необходимость антипортера), в результате чего стала возможной коэволюция активного транспорта ионов и современных фосфолипидных мембран. Лишь тогда клетки смогли покинуть источники и заселить океаны и скалы Земли. Мы видели, что эта четкая последовательность событий может объяснить парадоксальные свойства Последнего всеобщего предка, как и глубокие различия бактерий и архей. Кроме того, эти жесткие требования могут объяснить, почему вся жизнь на Земле хемиосмотична: почему это странное свойство распространено столь же широко, как генетический код.Этот сценарий (условия, распространенные в космических масштабах и в то же время отвечающие ряду жестких требований, которые определяют ход событий) наводит на мысль, что повсюду во Вселенной жизнь хемиосмотична. А значит, она должна испытывать те же проблемы и располагать теми же возможностями. Хемиосмотические сопряжение предоставляет живым организмам неограниченное многообразие метаболических путей, благодаря чему клетки могут “питаться” и “дышать” почти чем угодно. Так же, как гены (из-за универсальности генетического кода) могут в ходе горизонтального переноса передаваться от одной клетки к другой, инструментарий для приспособления метаболизма к радикально различным условиям может передаваться сходным образом, так как все клетки пользуются одной “операционной системой”. Я удивился бы, если во всей Вселенной (включая Солнечную систему) не нашлось бы ни одной бактерии, которая жила бы примерно так же, как на Земле – то есть получая энергию при помощи окислительно-восстановительных реакций и протонных градиентов на мембранах. Это можно предсказать, исходя из базовых принципов.