Окислительно-восстановительные реакции предполагают перенос электронов от донора (в данном случае H2
) к акцептору (CO2). Готовность молекулы отдавать свои электроны называютВ этом и проблема H2
и CO2. При нейтральном pH = 7 восстановительный потенциал H2 составляет –414 мВ. Если H2 отдаст свои два электрона, от него останется два протона: 2H+. Восстановительный потенциал водорода отражает этот динамический баланс – склонность H2 терять электроны, превращаясь в H+, и склонность 2H+ захватывать электроны, образуя H2. Если бы CO2 приобрел эти электроны, он превратился бы в формиат. Но восстановительный потенциал формиата равен –430 мВ. Это означает, что он склонен отдавать электроны на H+ с образованием H2 и CO2: фактически это обратная реакция. Формальдегид и того хуже. Его восстановительный потенциал примерно равен –580 мВ. Он крайне неохотно удерживает собственные электроны и с легкостью отдаст их протонам (с образованием H2). Таким образом, если рассматривать реакцию при pH = 7, Вехтерсхойзер прав: H2 никоим образом не сможет восстановить CO2[49]. Но некоторые бактерии и археи живут именно благодаря этой реакции, а значит, она возможна. Мы подробно рассмотрим, как они это делают, в следующей главе. А сейчас все, что нам нужно знать: что бактерии, живущие на H2 и CO2, могут расти, лишь получая энергию за счет трансмембранного протонного градиента. Это и есть ключ.Восстановительный потенциал молекулы часто зависит от pH – иначе говоря, от концентрации протонов. Причина достаточно проста. При переносе электрона переносится и отрицательный заряд. Если молекула, которая восстанавливается, может принять еще и протон, продукт получается более стабильным, потому что положительный заряд протона компенсирует отрицательный заряд электрона. Чем больше протонов доступно для компенсации заряда, тем проще осуществить перенос электрона. Веществу становится легче принять пару электронов. Действительно, восстановительный потенциал повышается при закислении среды примерно на 59 мВ с каждой единицей pH. Чем кислее раствор, тем проще передать электроны на CO2
и получить формиат или формальдегид. К сожалению, то же самое относится и к водороду. Чем раствор кислее, тем проще перенести электроны на протоны с образованием водорода H2. И если просто изменить pH, это не возымеет эффекта. Восстановить CO2 при помощи H2 по-прежнему будет невозможно.А теперь подумайте о протонном трансмембранном градиенте. Концентрация протонов – кислотность – по разные стороны мембраны различается. Точно такое же различие наблюдается в щелочных источниках. Щелочные гидротермальные потоки держат путь через лабиринт микропор. Сквозь них же течет слабокислая океанская вода. В некоторых местах потоки соприкасаются: при этом океанская вода, насыщенная CO2
, отделяется от щелочных потоков тонкой неорганической стенкой, содержащей FeS минералы с полупроводниковыми свойствами. Восстановительный потенциал H2 в щелочных условиях становится ниже: водород в такой среде отчаянно желает отринуть свои электроны, а оставшийся после этого H+ может спариться с OH– в щелочных потоках, порождая стабильную воду. При pH = 10 восстановительный потенциал H2 равен –584 мВ: это сильный восстановитель. А при pH = 6 восстановительный потенциал для формиата равен –370 мВ, для формальдегида он равен –520 мВ. Иными словами, при такой разнице водороду довольно легко восстановить CO2 с образованием формальдегида[50]. Единственный вопрос: как именно электроны переносятся с H2 на CO2? Дело в том, что железосерные минералы в тонких неорганических перегородках микропористых источников проводят электроны – пусть не так хорошо, как медная проволока. Теоретически физическое строение щелочных источников могло обеспечить восстановление CO2 водородом, в результате чего могла получиться органика (