Среди огромного богатства узоров я для начала выделю один — самый простой. Он основан на ритмичном повторении мотива из двух темных горизонтальных листьев и их перекличке с аналогичными вертикальными фигурами. Бросающаяся в глаза симметрия — это параллельный сдвиг узора и либо горизонтальное, либо вертикальное его отражение. Заметьте, что арабы очень любят конструкции, в которых темные и светлые элементы рисунка идентичны. Если внимательно вглядеться, не обращая внимания на цвет, то можно увидеть, что новый лист получается, если предыдущий повернуть точно под прямым углом. Затем, не меняя оси вращения, опять повернем лист на 90° — получим третью фигуру, снова поворот — и мы получили четвертую фигуру. Подобное вращение очень гармонично и правильно закручивает весь орнамент: каждый лист в орнаменте прибывает на расположение другого листа, как бы далеко от центра вращения он ни отстоял.
Отражение по горизонтали — это двусторонняя симметрия цветного узора, и таково же отражение по вертикали. Но если игнорировать цвета, мы увидим четырехстороннюю симметрию. Она получается четырехкратным поворотом фигуры на 90°.
Точно так же мы с вами раньше доказали теорему Пифагора, поэтому нераскрашенный орнамент своей симметрией напоминает пифагоров квадрат.
Теперь обратимся к более тонким рисункам: четырехцветные треугольные фигуры, похожие на флаги на ветру, отображает один очень простой вид симметрии, в двух направлениях. Можно сдвинуть раппорт по вертикали или по горизонтали. Волнистость здесь также играет роль. Редко можно найти узор, который не допускает отражения, потому что все треугольники поворачиваются вправо, а отражение развернуло бы их влево.
Теперь рассмотрим подробно все треугольные фигуры, чтобы понять, чем они различаются между собой. Во-первых, эти элементы образуют две большие группы, разделяемые по тону, — темную и светлую. Мы видим также симметрию вращения. Сосредоточьте внимание на центре, в котором сходятся вершины всех шести фигур. Обратите внимание, что светлая и темная фигуры чередуются. Темный треугольник можно повернуть так, чтобы он занял положение следующего темного треугольника, затем следующего и, наконец, вернулся в исходное положение, — тройная симметрия, вокруг которой вращается весь узор.
Но это не все возможные виды симметрии. Забудьте про цвет совсем. Обратите внимание: мы можем повернуть фигуру вокруг центра, потому что все треугольники одинаковы по форме. Это шестерная симметрия, которая изучена нами лучше всего, так как это симметрия снежинки.
Тут нематематик имеет право спросить: «Извините, конечно, но какое отношение все это имеет к математике? Неужели серьезные арабские мыслители тратили свое драгоценное время на такие игры, не говоря уже о современных ученых?» Дам неожиданный ответ: это не игра. Подобные эксперименты помогают понять то, с чем мы сталкиваемся ежедневно и ежечасно, потому что живем в трехмерном мире и все категории этого пространства неразрывны. Решая простые двумерные задачи, связанные с рисунками, мы открываем потаенные законы, управляющие нашим пространством. Они прежде всего касаются определенных видов симметрии, которые существуют не только в искусственных моделях. Они заложены в фундаментальные основы жизни, созданные самой природой, — в структуры атомов.
Наиболее явно эти структуры можно отследить в кристаллах. Посмотрите на необработанный исландский шпат. Вы удивитесь и невольно зададите себе вопрос: почему он имеет такую правильную форму? Почему его грани плоские? Но таковы кристаллы, мы привыкли видеть их правильными и симметричными, но почему? Они не сделаны человеком, такими их создает природа. Двумерная плоскость позволяет понять, как материя образуется из атомов, которые собираются в структуры один к одному. В конечном итоге они складываются в узоры, похожие на симметричные мавританские орнаменты, которые я проанализировал.
Возьмите, например, красивый куб пирита или самый изысканный кристалл флюорита, имеющий восьмигранную форму (кстати сказать, это также естественная форма алмаза). Их симметрия обусловлена трехмерностью пространства, в котором мы живем. И никакие структуры, созданные атомами, не могут нарушить этот важнейший закон природы. Как элементы узора, атомы в кристалле укладываются во всех направлениях. Таким образом, кристалл, как и узор, должен иметь форму, которая может расширяться или повторяться во всех направлениях до бесконечности. Вот почему грани кристалла могут иметь только определенные формы — в паттерне есть только симметрия. Возможна двусторонняя, четырехсторонняя, шестисторонняя симметрия и не более. Но не пятисторонняя. Вы не можете сделать так, чтобы атомы образовали пять треугольников, которые одновременно вписались бы в пространство.