Читаем Воспитание машин. Новая история разума полностью

Современное машинное обучение пытается найти решение этой задачи с помощью все тех же глубоких нейросетей. У всех на слуху недавние победы машин во всевозможных стратегических играх, от культовой древней игры го до новомодных StarCraft 2 и Dota 2, где требуется реагировать на действия соперников в реальном времени и строить гипотезы о том, что происходит в ненаблюдаемых областях игрового поля. Эти достижения демонстрируют способность глубоких нейросетей формировать полезные поведенческие навыки и строить выигрышные стратегии в виртуальных мирах. Но современные алгоритмы пока что не позволяют машинному интеллекту вырваться из этих виртуальных миров в реальный. Обучение нейросетей происходит сегодня слишком медленно, и соответствующий «жизненный опыт» за приемлемое время удается набрать лишь в виртуальном мире за счет существенного ускорения темпа игры. Эти алгоритмы невозможно перенести на обучение роботов в реальном мире, где у них не будет столько времени на обучение и стольких виртуальных жизней, которыми заплачено за неудачные решения.

К тому же, если вернуться к разговорному интеллекту, у нас пока нет виртуальных миров для оттачивания разговорных навыков. Ассистентам надо учиться рассуждать и вести диалоги, а для этого – пробовать самим генерировать варианты ответов в различных сценариях. Привычное обучение на больших корпусах готовых диалогов здесь не подходит. Надо, чтобы кто-то оценивал качество каждой реплики в бесчисленных ветвящихся вариантах развития диалогов, из которых лишь очень немногие могут присутствовать в обучающей выборке. А на это пока что способны только живые люди и лишь в реальном времени.

Резюмируя, можно сказать, что существующий уровень машинного интеллекта явно не устраивает лидеров цифровой революции, которые остро нуждаются в разговорном интеллекте человеческого уровня и будут вкладываться в его создание, чтобы не отстать от конкурентов. Рынок разговорного интеллекта удваивается каждые 2 года и в 2020 году должен был превысить $12 млрд. Так что спрос на сильный ИИ в современной экономике уже сформировался, и мы понимаем, кому и для чего он сегодня нужен. Следовательно, этим уже имеет смысл заниматься, хотя еще совсем недавно после всех пережитых разочарований задача построения сильного ИИ всерьез не воспринималась, а разговоры о нем считались ненаучными.

Цифровые платформы будущего: интеллект роботов

Разговорный интеллект «здесь и сейчас» нужен тем, кто сегодня зарабатывает в основном за счет персонализации рекламы. Что собой представляют те же электронные витрины Amazon, как не набор рекламных баннеров, сделанных с учетом предпочтений каждого покупателя? Между тем весь рекламный рынок, $560 млрд, составляет лишь 0,5 % мирового ВВП. Так что рыночный потенциал для применения ИИ гораздо шире, чем рынок умных программных ассистентов.

Но для радикального расширения области применений ИИ программным агентам предстоит выйти из виртуального мира в реальный, превратиться в роботов. Сенсорный интеллект агентов предстоит дополнить моторным интеллектом роботов – способностью активно взаимодействовать с миром, иметь предиктивную модель внешнего мира и своих действий в нем, чтобы, например, понимать, что стул или чашку можно переставить с места на место, а шкаф или машину лучше и не пытаться, или что, если чашку наклонить, ее содержимое выльется, или что двери иногда открываются легко, а иногда нет и, если они заперты, в них надо не ломиться, а стучаться. Последнее уже относится к области социального интеллекта – понимания того, как принято себя вести в обществе, чего от тебя ждут в тех или иных ситуациях, «что такое хорошо и что такое плохо».

Все эти элементарные знания, известные любому ребенку, невозможно запрограммировать, им надо обучаться. И обучаться активно, методом проб и ошибок, как это делают дети. А для этого у роботов должна быть искусственная психика с врожденным любопытством, настроенная, как и у детей, на постоянное обучение, чтобы как можно скорее набраться опыта и научиться достигать своих целей в этом сложном и непредсказуемом поначалу мире. Искусственная психика роботов должна быть настолько универсальна, чтобы она могла обеспечить эффективное обучение всем видам интеллекта: сенсорному, моторному, социальному и разговорному. Ведь и дети обучаются ходить, говорить и вести себя правильно практически одновременно.

В математике бывает, что иногда легче решить задачу в более общей постановке, которая лучше отражает суть проблемы. Возможно, разработка искусственной психики – тот самый случай: вместо множества специализированных систем, обучающихся разным задачам по разным лекалам (подход, принятый сегодня в глубоком обучении), лучше разработать единый общий интеллект (Artificial General Intelligence, AGI).

Резюме

Перейти на страницу:

Похожие книги

Цивилизационные паттерны и исторические процессы
Цивилизационные паттерны и исторические процессы

Йохан Арнасон (р. 1940) – ведущий теоретик современной исторической социологии и один из основоположников цивилизационного анализа как социологической парадигмы. Находясь в продуктивном диалоге со Ш. Эйзенштадтом, разработавшим концепцию множественных модерностей, Арнасон развивает так называемый реляционный подход к исследованию цивилизаций. Одна из ключевых его особенностей – акцент на способности цивилизаций к взаимному обучению и заимствованию тех или иных культурных черт. При этом процесс развития цивилизации, по мнению автора, не всегда ограничен предсказуемым сценарием – его направление может изменяться под влиянием креативности социального действия и случайных событий. Характеризуя взаимоотношения различных цивилизаций с Западом, исследователь выделяет взаимодействие традиций, разнообразных путей модернизации и альтернативных форм модерности. Анализируя эволюцию российского общества, он показывает, как складывалась установка на «отрицание западной модерности с претензиями на то, чтобы превзойти ее». В представленный сборник работ Арнасона входят тексты, в которых он, с одной стороны, описывает основные положения своей теории, а с другой – демонстрирует возможности ее применения, в частности исследуя советскую модель. Эти труды значимы не только для осмысления исторических изменений в домодерных и модерных цивилизациях, но и для понимания социальных трансформаций в сегодняшнем мире.

Йохан Арнасон

Обществознание, социология
Живым голосом. Зачем в цифровую эру говорить и слушать
Живым голосом. Зачем в цифровую эру говорить и слушать

Сегодня мы постоянно обмениваемся сообщениями, размещаем посты в социальных сетях, переписываемся в чатах и не замечаем, как экраны наших электронных устройств разъединяют нас с близкими. Даже во время семейных обедов мы постоянно проверяем мессенджеры. Стремясь быть многозадачным, современный человек утрачивает самое главное – умение говорить и слушать. Можно ли это изменить, не отказываясь от достижений цифровых технологий? В книге "Живым голосом. Зачем в цифровую эру говорить и слушать" профессор Массачусетского технологического института Шерри Тёркл увлекательно и просто рассказывает о том, как интернет-общение влияет на наши социальные навыки, и предлагает вместе подумать, как нам с этим быть.В формате PDF A4 сохранён издательский дизайн.

Шерри Тёркл

Обществознание, социология