Другим примером первого поколения цифровых платформ является Amazon, оператор «длинного хвоста» в ретейле. Начиналось все в 1994 году с уникального предложения «бесконечной книжной полки» – книжного разнообразия, недоступного для офлайновых магазинов. Предложение пришлось пользователям по душе, бизнес быстро расширялся, и сегодня через Amazon в США совершается уже половина всех онлайн-покупок.
«Секретным оружием» Amazon является его рекомендательная система, помогающая пользователям ориентироваться во всем этом разнообразии. И основана она опять-таки на алгоритмах машинного обучения, превращающих обычные учетные данные – кто что купил – в персональные рекомендации: кому что может быть интересно. В результате – большее удовлетворение покупателей и расширение рынка для продавцов, ведь теперь любой нишевой товар может найти своего покупателя.
В отличие от Google, Amazon приходится иметь дело с реальными товарами и организовывать логистику в реальном мире, поэтому выручка на одного сотрудника в Amazon ненамного выше средней. Но это пока! Потому что Amazon сегодня активно инвестирует в искусственный интеллект и робототехнику, вводя в строй полностью автоматизированные склады, экспериментируя с доставкой товаров роботами и дронами и открывая офлайн-магазины Amazon Go без продавцов и кассиров. Этот тренд мы более подробно обсудим ниже.
В целом же в 1990-х и 2000-х годах машинный интеллект фокусировался на извлечении из больших объемов данных структурированных знаний, которые можно использовать для персонализации разного рода услуг конечным пользователям. Огромные массивы структурированных знаний накоплены в проприетарных
Современные цифровые платформы: сенсорный интеллект
Голосовые помощники стали новацией 2010-х годов в качестве нового интерфейса пользователя в эпоху смартфонов. Они, как и безлюдные магазины Amazon Go, обязаны своим появлением новому поколению алгоритмов машинного обучения – так называемому
Это, конечно, не означало автоматически появления искусственного интеллекта, как он когда-то задумывался его отцами-основателями. Для этого у человечества пока что банально не хватает соответствующих знаний, о чем мы еще поговорим в главе 5. Мощности сегодняшних суперкомпьютеров достигают 1016
FLOPS, однако это до сих пор не привело к появлению сильного ИИ. Но кое-какие разработки 1980-х и 1990-х годов, для которых в свое время просто не хватало вычислительных мощностей, чтобы выйти на уровень отдельных когнитивных способностей, сравнимый с человеческим, «выстрелили» именно в этот момент. Речь идет об обучении некоторых типов искусственных нейронных сетей, разработанных для работы с изображениями (сверточные нейронные сети) и временными сигналами (сети с долговременной памятью).Оказалось, что просто за счет увеличения количества слоев в таких (глубоких) нейросетях и увеличения объема данных для их обучения, для чего теперь имелись вычислительные мощности, качество распознавания картинок и звука может достигать человеческого уровня. В итоге на протяжении 2010-х годов, благодаря технологиям глубокого обучения, машины, говоря простым языком, научились видеть и слышать не хуже человека.
Соответственно появилась масса новых возможностей для замены человека машинами – там, где люди работали «умными сенсорами»: контролерами, охранниками, операторами колл-центров, и в других профессиях с относительно простой бизнес-логикой. Отсюда – появляющиеся сегодня проходные без охранников, магазины без продавцов, такси без водителей, безлюдные колл-центры и голосовые помощники в смартфонах и умных колонках.
И это еще только начало. Потенциальный рынок приложений слабого ИИ, наделенного сверхчеловеческими сенсорными возможностями по доступным ценам, чрезвычайно большой. Он касается самых массовых профессий – продавцов, кассиров, водителей и т. д., поэтому обещает большой экономический эффект. Оказывается, люди, по крайней мере многие из них, не так уж и незаменимы.