Плазма непрозрачна для электромагнитных волн, частоты которых меньше плазменной. Проблема распространения волн проявляется и в физике твердого тела. В присутствии статического магнитного поля распространение поперечных электромагнитных волн через плазму твердого тела возникает много новых частот. Появляется такой параметр как угол между направлением распространения волны и магнитным полем. Для описания низкочастотных волн в плазме подходит модель возбуждения волн в заряженной струне, параллельно магнитному полю. Если силовая линия смещается поперек поля, то заряженные частицы вынуждены двигаться в нем подобно бусинкам, насаженным на тонкую струну [38].
В США, Англии и Советском Союзе в период с 1948 по 1958 г. широко проводились исследования плазмы. Особенностью поведения плазмы твердого тела является зависимость массы носителей от ориентации кристаллографических осей. Предполагаются различия между величинами масс подвижных носителей в газоразрядной и твердотельной плазме. В твердом теле электрон имеет эффективную массу m, определяемую периодическим потенциалом решетки. Она изменяется от материала к материалу, составляя от нескольких масс свободного электрона me до сотых долей me. Разнообразие твердых материалов позволяет иметь плазму с такими параметрами, которые невозможны в газе.
Теория описывает практику двух принципиальных способов воздействия на ионосферу – распыление в ней химических реагентов и «накачка» избранных участков сфокусированными пучками радиоволн, «возбуждение» атомов. Так можно создавать локальные, высоко ионизированные области ионосферы, которые располагаются вдоль магнитных силовых линий Земли на огромных расстояниях. Группа ученых Мюнхенского Института космической физики и астрофизики им. Макса Планка провела серию экспериментов с образованием искусственных облаков плазмы в космическом пространстве. Немецкие специалисты изучали их поведение, создавая видимые облака плазмы в магнитосфере Земли. Исследователи исходят из того, что поведение заряженных частиц в электрическом и магнитном полях им известно. Если положительно заряженный ион или отрицательно заряженный электрон попадают в магнитное поле и компонента скорости перпендикулярна к этому полю, то частица начинает двигаться по окружностям вокруг силовых линий. Компонента скорости параллельная магнитному полю не меняется, движение по этому направлению остается неизменным. В случае произвольно направленной скорости заряженная частица движется по винтовой линии, ось которой совпадает с силовой линией поля.
Искусственной созданное облако плазмы позволяет непосредственно увидеть силовые линии поля Земли и движение по ним ионных частиц. В первых экспериментах, проведенных в 1963 г. ракеты поднимались на высоту от 90 до 120 миль (150–200 км). На каждой из запущенных ракет помещалось несколько килограммов стронция. Испарение стронция производилось путем химической реакции. Затем стронций выбрасывался в атмосферу. Появлялись облака только не ионизованного стронция. Следов ионизованного стронция не было обнаружено. Поэтому стали испытывать новые методы испарения более тяжелого щелочного металла – бария. В ноябре 1964 г. проведена серия экспериментов с использованием бария. Десять минут спустя после выпускания парообразного бария облако плазмы ионизованного бария делается видимым с Земли даже невооруженным глазом. Ионизованная часть бариевого облака претерпевает изменения и приобретает сигаровидную форму в отличие от сферического не ионизованного облака. По мнению ученых, существенное искажение сигарообразной формы впоследствии может произойти за счет влияния неоднородных электрических полей. В экспериментах с бариевыми облаками были обнаружены слоистости. Ширина слоев изменялась от половины мили до 6 миль. Наличие слоев напоминает пучок волокон. Эти волокна не сохраняют своего положения в пространстве, а изменяют его в течение нескольких минут. В апреле 1966 г. в пустыне Сахара провели эксперименты на высоте 1200 миль. С французских ракет выпущены два ионизованных облака, каждое из которых состояло из 50 г ионов бария. Они растянулись на расстояние свыше 1200 миль и обозначили силовые линии магнитного поля Земли от центра Африки до центра Европы [39]. Пуски, очевидно, производились с космодрома Хаммагир (31°36′ с. ш. и 2°12′ з. д.) в Алжире, а под центром Европы, надо полагать, подразумевается Лондонский меридиан. Пятью месяцами позже ионное облако было создано на высоте около 570 миль (917 км) над Восточным побережьем США. По мере выпадения частиц в нижнюю часть атмосферы, наблюдалось удлинение ионного облака вдоль силовых линий магнитного поля вплоть до Северной Дакоты. Географические координаты места опыта в [39] не указаны, Можно предположить, что запуск ракет был производен с восточного испытательного полигона на мысе Канаверал Флорида (28,483° с. ш., 80,567° з. д., d = – 0.679°). Если проложить курс от полигона на юго-западную оконечность штата Северная Дакота, азимут составит А ≈ 315 °.