Вот и все! Сейчас мы совершили переход от нескольких разрозненных точек – неподатливых и статичных – к великолепной непрерывной линии. Она включает в себя
Например, мы можем продлить прямую в далекое прошлое:
Подумать только! Миллион лет назад Миссисипи была просто громадной рекой, более миллиона километров длиной. Именно тогда она выглядела как гигантская удочка, висящая над Мексиканским заливом. Та,
Поскольку прямую можно продлить в двух направлениях, мы можем развить нашу линейную модель и вперед во времени:
Вот оно! В начале XXVIII в. Миссисипи будет иметь длину менее 1,6 км. Чтобы приспособиться к этому, североамериканский континент сомнется, как скрученная в шарик бумажка, в результате чего Каир и Новый Орлеан обретут свое долгожданное соседство вдоль реки. Между ними будет маячить расселина глубиной в 800 км, разрывающая земную кору.
Я прямо слышу, как вы жалуетесь. «Никакая серьезная математика, – скажете вы, – не может основываться на таком шатком фундаменте».
Ха! А что такое «серьезная» математика? Математика – это логическая игра, глупая шутка, состоящая из абстракций. И, как и во многих играх, прямые – это то, без чего невозможно обойтись для упрощения. Они помогают обойти медленные извилины математического анализа точно так же, как спрямившееся русло укорачивает путь реки. Именно поэтому прямые используются везде – в статистических моделях, в более многомерных преобразованиях, в экзотических геометрических поверхностях и, больше всего, в самой сущности производных.
Возьмем параболу. Если бы у вас были глаза, как у хорошо накачанного кофеином летчика-аса, едва бросив взгляд на рисунок ниже, вы заметили бы: парабола прямой не является.
Вместо этого она является – прошу прощения за использование математического жаргона – кривой. Но давайте посмотрим на нее поближе. Что вы видите теперь?
Это все еще кривая, да. Но у этой кривой меньше изгибов, эта парабола менее параболическая. А посмотрите, что будет, если мы приблизим ее еще больше:
Искривление является мягким, постепенным. Мы словно напеваем себе под нос, чтобы уснуть. Приблизьте его еще, и кривизна станет такой малозаметной, что невооруженный глаз просто откажется ее воспринимать. Фактически линия остается кривой, но для любых практических целей ее можно считать прямой.
И в бесконечно малом масштабе – меньше всех известных размеров, но все же не равном нулю – кривая достигает того, что мы ищем. Она становится – по крайней мере, в нашем воображении – по-настоящему прямой.
И какое же отношение это имеет к производной? Непосредственное.
Производная, как вы помните, – это уровень изменения в определенный момент. Например, она может сказать нам, как длина Миссисипи изменяется в отдельно взятое мгновение.
Но длина Миссисипи не изменялась с постоянной, устойчивой скоростью. Она какое-то время оставалась одной и той же, затем резко сокращалась, а потом постепенно увеличивалась. Будучи обычными людьми, мы не можем испытывать неудовлетворенность из-за того, что река течет и постоянно движется, но в качестве математиков явно выражаем недовольство. Как мы можем вынести такое беспорядочное поведение береговой линии? Как мы будем говорить о степени изменений, когда река не способна придерживаться какого-либо показателя дольше, чем одно мгновение?
Простой способ: мы можем изменить масштаб, как сделали это с параболой. В бесконечно малом масштабе изгибы графика выпрямятся, позволив нам расшифровать производную.
Таким образом, все дифференциальное исчисление основывается на одном простом наблюдении:
В большом масштабе Земля не является плоской. В самом деле, все наши безнадежные попытки сгладить ее, такие как проекция Меркатора, вызывают искажения, из-за которых Гренландия (имеющая площадь менее 2,59 млн км2
) кажется такой же большой, как Африка (площадью почти 31 млн км2). Но в маленьких масштабах? Эй, да почему бы нет! Подойдите достаточно близко, и вы никогда не заметите кривизну. Если мне нужно проплыть по Миссисипи от Каира, штат Иллинойс, до Колумбуса, штат Кентукки, 32 км, или всего 0,08 % длины окружности земного шара, то плоская карта подходит мне просто идеально.Твен совершил старую, как мир, ошибку, перепутав