На первых страницах «Жизни на Миссисипи» Марк Твен[10]
показывает читателям то, чего они так страстно желают, – статистику. Длина реки Миссисипи составляет 6920 км. Ее бассейн – 3 237 485 км2. Ежегодно она наносит 406 млн тонн ила. «Если бы эту грязь уплотнить, – рассчитывает Твен, – вышел бы массив площадью в квадратную милю (1,6 км2. –Но не беспокойтесь, фанаты Марка Твена! Этот человек сам сказал: «Вначале дайте ваши факты, а потом можете переиначивать их столько, сколько вам заблагорассудится». Такой виртуозный выдумщик, как Твен, мог рассказывать истории о чем угодно – даже о числах. Для примера:
Как и во всех старых реках, воды Миссисипи струятся через лениво петляющие повороты. На одном участке своего течения она извивается так, что тянется на 2000 км, тогда как по прямой там всего 1086 км. И время от времени река прорезает узкие перешейки земли, укорачивая свое русло. «Не раз она сокращала свой путь на тридцать миль (48 км) одним прыжком»[12]
, – говорит Марк Твен. По сравнению с тем, что было за 200 лет до того, как вышла книга Твена, нижний отрезок реки между Каиром, штат Иллинойс, и Новым Орлеаном, штат Луизиана, сократился с 1955 до 1899 км, а затем до 1688 км и даже 1566 км.Здесь снова дадим слово рассказчику:
Не играет ли Твен в какую-то глупую арифметическую игру? Вовсе нет! Это выдающаяся геометрическая игра. В основе математического анализа лежит фундаментальная геометрия, которая одновременно делает производные возможными и полезными, – всюду присутствующая геометрия прямой линии.
Посмотрите сами!
Мы можем нарисовать график, показывающий длину Нижней Миссисипи (от Каира до Нового Орлеана) в разные годы за время ее истории.
Да, наши данные несколько скудны, но нисходящее направление графика видно четко. В наши дни у статистиков есть излюбленный метод украшения таких схем. Этот инструмент известен экономистам, эпидемиологам и любителям поспешных обобщений как «линейная регрессия».
Во-первых, мы определяем «центральную точку» графика. Ее координатами является среднее арифметическое координат имеющихся данных.
Затем из всех прямых, проходящих через эту точку, мы выбираем ту, которая больше других совпадает с данными, то есть ближе всего проходит к уже обозначенным точкам.