«Поэзия начинается с тривиальных метафор, – написал однажды Роберт Фрост, – затем идут недурные метафоры, "изящные" метафоры, пока, наконец, не приходит черед глубоких размышлений». Не уверен, что Фрост нашел бы много поэтического в производных – они являются безнадежно прямыми, говорят только об одной вещи с досадной точностью, – но почва здесь богата метафорами. Если скорость говорит нам об изменении положения, то и ускорение говорит об изменении скорости, и точно так же соответствующая производная указывает на изменения в счастье.
Джеймс – не последний знаток метафор – знал, какой вопрос нужно задать следующим:
– А что насчет третьей производной?
В физике третья производная (
Я никогда не обучал рывку, кроме как в книгах. Три производных – это чертовски много. «Конечно, тот, кто может усвоить вторую или третью флюксию, – писал философ XVIII в. Джордж Беркли, используя термин, который Ньютон применял для производных, – как я думаю, разберется с любой проблемой божественной природы».
– Это довольно сложно понять, – предупредил я Джеймса. – Физическое объяснение достаточно хитрое.
Но в следующие пять минут я пересмотрел взгляды, заполучив в свои сети ярого приверженца математического анализа.
– Не сдавайся! – выкрикнул Джеймс. – Третья производная – это просто: это изменение в изменении изменения моего счастья.
Он говорил все громче, коллеги уже с тревогой оглядывались на нас.
– На самом деле я должен получить
– Это так, – сказал я. – По правде говоря, если они будут точно знать, как изменяется твое счастье в данный конкретный момент – всю бесконечную цепочку производных, – тогда они смогут предсказать твое эмоциональное состояние как угодно далеко в будущем. При наличии достаточного количества производных они смогут рассчитать твое счастье до конца жизни.
– Еще лучше! – Джеймс бешено рассмеялся и захлопал в ладоши. – Мне больше никогда не придется говорить с друзьями!
Я забеспокоился:
– А не окажет ли это само по себе отрицательное воздействие на твой уровень счастья?
Джеймс отмел все возражения:
– Я просто выражу все в производных. Они поймут.
И тут прозвенел звонок. Даже учительский рай приходится иногда покидать, чтобы провести уроки. Отправляясь в класс, я оставил чайную чашку на стойке. Надеюсь, я пробормотал слова благодарности Саре – женщине, которая готовила для нас бутерброды и мыла посуду, – но, зная о своих дурных привычках в то время, могу сказать, что случались дни, когда я забывал это сделать.
IV
Универсальный язык
Я люблю изобретать математические слова. По крайней мере, мне нравится пытаться это делать. Жестокая правда состоит в том, что канселтарсис (от англ.
● константа (постоянная) – величина, которая не изменяется;
● переменная – величина, которая изменяется;
● функция – правило, устанавливающее соотношение между данными на входе и на выходе;
● производная – одномоментная величина изменений[7]
;● математический анализ – система исчисления, которую он разработал.
А если еще перечислить символы, которые Лейбниц, хотя и не придумал, но ввел во всеобщий обиход (например, ≅ для конгруэнтности, = для равенства и использование скобок для группировки), то становится ясно, что, делая математическую запись в XXI в., мы идем путем Лейбница, проложенным в XVII в. Но даже если это и так, все вышеперечисленные достижения – всего лишь примечания к его самому значительному вкладу из всех.
Букве
Это звучит ужасающе просто. Больше напоминает «Улицу Сезам», чем Гарвард Ярд[8]
. «Все, что Лейбниц сделал, – это поставил