Пока что все идет хорошо? Ну так пришло время забыть обо всем. Забудьте прямоугольник и полоски роста. Забудьте сопутствующие факторы, геометрическое значение и логическую цепочку. Забудьте, что мы с вами когда-то встречались, забудьте, что этот прямоугольник вообще существовал. На обесцвеченной поверхности вашей памяти остается только одна, последняя строка символов: (
Теперь применим ее наугад к тысяче различных сценариев. Применим к
Эта бессмысленная манипуляция, это «перебрасывание символами» – не ошибка математического анализа. Это его особенность.
Матан – система, бюрократическое образование, формализованный свод правил. Посмотрите на само происхождение термина: английское слово
Как объясняет Владимир Арнольд, Готфрид Лейбниц старался разработать математический анализ «в виде, специально приспособленном для обучения людей, которые его совсем не понимают»[28]
.Эта фраза попадает в яблочко. Арнольд совершенно прав. В начале XVII в. перебрасывание символами было не в моде. «Символы бедны и некрасивы, но они необходимые подпорки для иллюстрации, – писал философ Томас Гоббс, – им уместно появляться на публике не более, чем позорным необходимым делам, которыми вы занимаетесь в своих комнатах». И не сказать, что Гоббс был одинок в своем брюзжании. В то время математическая традиция предпочитала ненадежным алгебраическим выводам точность геометрии.
Но в подходе Гоббса есть недостаток, на который с радостью укажет любой студент: вы должны
Множество математиков работало с производными и интегралами до Ньютона и Лейбница. Но они решали свои проблемы мудрыми методами для «одноразового употребления», то есть подходящими к конкретной ситуации. Идеей «математического анализа» – словосочетание, которое ввел в обиход Лейбниц, – было создание единой структуры для вычислений. Века спустя математик Карл Гаусс будет писать о таких методах: «С их помощью нельзя достичь того, чего нельзя было бы достичь без них». В трудные моменты я говорил то же самое о вилках. Но точно так же, как я продолжал пользоваться за обедом столовыми приборами, Гаусс видел значительную ценность математического анализа: «Любой, кто всесторонне овладел им, способен без всяких бессознательных проблесков гениальности, которыми никто не может управлять, решить соответствующую проблему, даже если делает это механически…»
Когда мои студенты прибегают к зазубриванию правил, они не предают дух математического анализа. Они принимают его. Даже когда они возвращаются к неверной формуле (
По своей конструкции матан – это автоматическое мышление.
К 1680 г. Лейбниц освоил бесконечно малые – одно из самых трудных и ершистых философских понятий. Почему он не добавил еще больше понятий? Почему не
В мечтах Лейбница все было математическим анализом.
Увы, на самом деле это не так. Последние десятилетия своей жизни Лейбниц чах в маленьком городе Ганновере в Германии, его злобный работодатель заставлял ученого закончить генеалогическое исследование. Мораль для школьников: вовремя сдавайте свои сочинения.
Еще хуже вышло со спором о приоритете открытия математического анализа, который разгорелся у Лейбница с Ньютоном. Лейбниц опубликовал свои результаты первым, но Ньютон высказал схожую идею раньше, и общественное мнение оказалось на его стороне. Научная общественность признала Лейбница интеллектуальным вором. Как сказал математик Стивен Вольфрам, этот дележ математического анализа стал поворотной точкой: