Как учитель я подозреваю, что лучший подход к суммам Римана – очень тщательно рассчитать одну или две из них, а потом изъять их из обращения. Механизм среднеквадратичного отклонения сложен для понимания, особенно если алгебра у вас слегка хромает. Неудобство подхода заставляет искать способы обойти острые углы, что в итоге выливается в славную форму фундаментальной теоремы.
Тем не менее как писатель я решился потворствовать своей любви к анализу (возможно, вызванной тем, как мало я о нем знаю). Функция Дирихле – моя любимая: это самый простой из известных мне примеров для того, чтобы раскрыть недостатки суммы Римана и выявить необходимость интеграла Лебега. (Нельзя не признать, что она основывается на «интуитивном» знании того, что рациональные числа составляют множество нулевой меры – один из самых известных и неожиданных результатов в элементарном анализе.)
Фундаментальная теорема: «Великая работа синтеза» (гл. XIX)
Когда я впервые читал курс математического анализа, мы целую неделю вычисляли определенные интегралы геометрическими методами, затем посвятили неделю неопределенным интегралам (то есть антипроизводным). В обоих случаях использовалось обозначение интеграла, но, насколько знали студенты, эти два отдельных способа совершенно не связаны. После всего этого скучного шоу я вскричал: «Абракадабра! В действительности они имеют отношение друг к другу!»
Я превратил фундаментальную теорему математического анализа в самый худший сюрприз ко дню рождения.
Теперь я не откладываю изучение фундаментальной теоремы ни на секунду дольше, чем мне это нужно. Это как в фильме «Когда Гарри встретил Салли»: «Когда вы понимаете, что хотите с кем-то провести остаток своих дней, вы желаете, чтобы эта часть вашей жизни началась как можно быстрее».
Численное интегрирование: «1994-й, год, когда родился математический анализ» (гл. XXII); «Сцены из невозможности» (гл. XXVIII)
Я не инженер, не исследователь диабета и не занимаюсь какими-либо другими подобными задачами, но понимаю, что численное интегрирование очень полезно в самых разных науках и, возможно, заслуживает больше внимания, чем ему уделяет стандартный курс математического анализа. Это особенно верно сейчас, когда алгебраическое программное обеспечение так хорошо вычисляет антипроизводные, тем самым освобождая нас от необходимости осваивать 1001 метод интегрирования.
Методы интегрирования: «Что происходит под знаком интеграла, остается под знаком интеграла» (гл. XX)
В этой главе я пытаюсь передать вкус и текстуру процесса интегрирования, не вычисляя каких-либо интегралов. Это глупая и, возможно, недостижимая задача, но она соответствует заявленной цели книги, поэтому мы здесь. Не то чтобы я не ценил вычисления; кстати, главная цель того, что мы называем «математический анализ», – это сделать вычисления более легкими, беглыми и как можно меньше задействовать при этом мозг. Я просто недостаточно хороший рассказчик, чтобы создать занимательную историю без тригонометрических замещений.
Постоянные интегрирования: «Отказать в существовании одним росчерком пера» (гл. XXI)
Снова вы можете увидеть мое увлечение кинематикой. Мне нравится знакомить с постоянными интегрирования на примере функции скорости, где +
Тела вращения: «Сражение с богами» (гл. XXIV); «Из невидимых сфер» (гл. XXV); «Труби, Гавриил, труби!» (гл. XXVII)
Думаю, тела вращения – замечательное завершение первого курса математического анализа. Они эффектны с виду, щедро одарены геометрически, от их возможностей просто дух захватывает, а также они позволяют нам поговорить об Архимеде и архангеле Гаврииле (чей образ воплотили в кино Кристофер Уокен и Тильда Суинтон – двое самых необычных актеров в истории кинематографа. Я понимаю, что этот факт не должен находиться здесь, но я не могу найти, куда еще его вставить, и не перенесу, если он не попадет в книгу).
Библиография
Мгновения
● Аристотель. Физика / Пер. В. П. Карпова. – М.: Эксмо-Пресс; Харьков: Фолио, 1999.
● Борхес Х. Л. Вымышленные истории / Пер. В. С. Кулагиной-Ярцевой. – М.: Амфора, 1999. – С. 178–188.
● Evers, Liz. It’s About Time: From Calendars and Clocks to Moon Cycles and Light Years – A History. London: Michael O’Mara Books, 2013.
● Gleick, James. Time Travel: A History. New York: Vintage Books, 2017.
● Joseph, George Gheverghese. The Crest of the Peacock: Non-European Roots of Mathematics. 3rd ed. Princeton, NJ: Princeton University Press, 2010.