Читаем Все формулы мира. Как математика объясняет законы природы полностью

Рассмотрим тонкий прямоугольный объем в атмосфере (хотя в целом атмосфера – это сферический слой, но если размер тела намного больше толщины атмосферы, то можно рассмотреть плоский случай). Он имеет массу M и объем V, равный произведению его площади S на толщину нашего тонкого слоя внутри атмосферы dh. Масса складывается из суммы масс отдельных частиц. Будем рассматривать атмосферу, преимущественно состоящую из атомов или молекул одного сорта. Массу одной частицы обозначим m, а их концентрацию (количество в единице объема) n. Тогда:



На этот слой действуют три силы: сила давления сверху, сила давления снизу и гравитация. Силу гравитации легко записать: это произведение массы слоя на ускорение свободного падения g. Сила давления – это произведение давления на площадь. Снизу давит сильнее, и если давление снизу мы обозначим P, то сверху оно меньше на небольшую величину dP.

Наш слой находится в равновесии, т. е. силы уравновешивают друг друга:



Это уравнение легко упростить, и мы получим – dP = mngdh. dP – отрицательная величина (давление падает с высотой).

Из школьной физики мы помним, что давление в идеальном газе – это плотность энергии движения составляющих его частиц. Каждая частица имеет энергию kT, где T – температура, а k – постоянная Больцмана. Значит, давление равно P = nkT. Можно считать, что в тонком слое температура меняется слабо, а изменение давления связано в первую очередь с уменьшением концентрации частиц при подъеме вверх (атмосфера становится разреженнее). Тогда dP = kTdn, где dn (тоже отрицательная величина) показывает, насколько концентрация частиц внизу слоя больше, чем вверху. Подставим это в нашу формулу и получим:



Теперь перепишем это и получим простое дифференциальное уравнение:



Мы уже сталкивались с похожим уравнением выше, а потому помним, что после интегрирования получим экспоненциальное решение:



где n0 – концентрация частиц на нулевой высоте, а h0=kT / (mg). Последняя величина как раз задает характерную толщину атмосферы: при подъеме на такую высоту концентрация частиц падает в e раз.

Теперь мы можем подставить значения концентрации частиц, температуры и ускорения свободного падения, характеризующие конкретную атмосферу, и получим ее характерную толщину.

В случае Земли температура равна примерно 300К, ускорение свободного падения – 10 м/с2 (что в системе СГС дает нам 1000 см/с2), а масса одной частицы примерно равняется 30 · 10–24 г. Постоянная Больцмана равна 1,38 · 10–16 эрг/К. В итоге получим, что характерная толщина земной атмосферы составляет около 1 млн см, т. е. 10 км.

А что у нейтронных звезд? Если мы говорим о достаточно молодых объектах с возрастами от нескольких сотен до сотен тысяч лет (именно такие компактные объекты удается наблюдать по тепловому излучению их поверхности), то температура составляет примерно 1 млн Кельвин. Типичный состав такой атмосферы – водород (если на нейтронную звезду натекло немного вещества) или железо. Соответственно, массы частиц или около 10–24 г, или 56 · 10–24 г. Ускорение свободного падения гигантское, его можно посчитать как GM / R2, где M – масса, а R – радиус компактного объекта. Получим огромную величину 1014 см/с2, т. е. толщина атмосферы от 1 мм (в случае железа) до 1 см (если основной газ – водород).

Удивительно, но даже такой тонкий слой вещества может сильно влиять на исходящее от поверхности излучение. Без влияния атмосферы мы видели бы от одиночных молодых нейтронных звезд практически идеальный тепловой спектр, а наблюдения показывают, что это не так. Из-за поглощения в толстой (несколько сантиметров!) водородной атмосфере фотоны низкой энергии выходят беспрепятственно лишь из ее внешних слоев, где температура немного ниже[123]. Наоборот, высокоэнергичные кванты рентгеновского излучения (а при 1 млн Кельвин поверхность испускает именно рентген) меньше поглощаются, поэтому достигают наших детекторов из более глубоких слоев. В результате регистрируемый спектр начинает отличаться от чернотельного.

В некоторых случаях природа подкидывает нам интересные загадки: спектр нейтронной звезды может плохо описываться водородным или железным составом. Тогда приходится подбирать нужные ингредиенты. Это не просто подгонка параметров. Дело в том, что после коллапса ядра и взрыва сверхновой часть выброшенного вещества иногда выпадает обратно на компактный объект, поэтому в атмосфере может появиться практически все – от водорода до железа. Что и в каком количестве окажется на поверхности, зависит от параметров взрыва. Таким образом, анализ состава атмосфер молодых нейтронных звезд помогает изучать, как происходят вспышки сверхновых.

Приложение 6

Быстрые радиовсплески

Возможно, сейчас, когда вы читаете эту книгу, загадка быстрых радиовсплесков уже решена. Пока же на протяжении нескольких лет она остается одной из самых «горячих» в астрофизике, вызывая потоки интересных идей и бурные споры.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука