Теперь рассчитаем плотность. Вещество втекает с радиуса гравитационного захвата, о котором мы говорили в приложении 4, с темпом
Собираем теперь все вместе, чтобы получить выражение для давления в падающем веществе:
Таким образом, давление повышается при приближении к звезде, но довольно медленно. Значит, более быстрый рост давления магнитного поля приведет к остановке вещества. Это произойдет на расстоянии, которое мы будем называть радиусом магнитосферы, или альвеновским радиусом, названном в честь шведского физика Ханнеса Альвена (Hannes Alfven).
Чтобы определить этот радиус, надо просто приравнять давление падающего вещества к магнитному давлению:
Выразим отсюда радиус, обозначив его
Теперь мы знаем, где магнитное поле останавливает падающее вещество. Если поле слишком слабое или темп аккреции слишком большой, альвеновский радиус может оказаться меньше радиуса нейтронной звезды. Значит, в такой ситуации влиянием поля можно пренебречь. В других случаях его необходимо учитывать.
Мы помним, что вещество представляет собой плазму, а потому не может двигаться поперек силовых линий[122]
. Стало быть, плазма будет течь к магнитным полюсам (ситуация похожа на ту, которая приводит к полярным сияниям на Земле). Именно там выделится кинетическая энергия падающего вещества. Из-за этого магнитные полярные шапки на поверхности нейтронной звезды будут горячее остальной поверхности, т. е. будут сильнее излучать. Поскольку компактный объект вращается, то его блеск будет периодически меняться, и возникнет рентгеновский пульсар. Однако не может ли что-то еще предотвратить падение вещества на поверхность?Падающее вещество сильно взаимодействует с магнитосферой, а она быстро вращается, так как жестко связана с нейтронной звездой. На расстоянии
При периоде вращения 10 с радиус коротации равен примерно 10 000 км. Это больше, чем альвеновский радиус нейтронной звезды с магнитным полем 1013
Гс на поверхности и темпом аккреции 1017 г / с (10 % от предельного). Иначе говоря, такая звезда не начнет аккрецировать.Видно, что радиус коротации уменьшается с ростом частоты (т. е. с уменьшением периода вращения). Значит, быстровращающаяся нейтронная звезда начнет аккрецировать вещество, только если у нее слабое магнитное поле или же очень велик поток вещества (и то и другое приводит к уменьшению альвеновского радиуса). Значит, компактному объекту надо замедлить свое вращение, чтобы аккреция началась. К счастью для наблюдателей, это происходит довольно быстро, так как на стадии пропеллера интенсивное взаимодействие магнитного поля с окружающим веществом приводит к быстрому торможению вращения нейтронной звезды.
В Галактике и ее спутниках – Магеллановых Облаках – известны сотни двойных систем с аккрецирующими нейтронными звездами. Многие из них являются рентгеновскими пульсарами. Предоставляем читателю самостоятельно оценить их типичные периоды вращения из равенства радиуса коротации и альвеновского радиуса при стандартном магнитном поле 1012
–1013 Гс и типичном темпе аккреции, соответствующем светимости около 10 % от эддингтоновской.Как и многие другие тела, нейтронные звезды имеют атмосферу. И как всё у нейтронных звезд, атмосфера у них необычная. Из-за мощной гравитации на поверхности атмосфера оказывается очень тонкой. Мы сможем получить формулу для определения ее толщины, применять которую, кстати, можно не только к нейтронным звездам.
Представьте себе любую атмосферу, например земную. Газ не улетучивается в космос, потому что его удерживает земная гравитация. Но при этом газ и не выпадает на поверхность. Это происходит из-за того, что атмосфера нагрета. Равновесие обеспечивается балансом между силой гравитации и тем, что в нижних слоях атмосферы давление выше. Попробуем разобраться в этом на уровне формул, которые позволят нам сделать и количественные оценки.