Читаем Всё о космических путешествиях за 60 минут полностью

Один из таких двигателей – ионный. Вместо того чтобы задействовать химическую энергию, выделяемую при сгорании, для создания высокоскоростной выхлопной струи электрические поля в нем используются для ускорения заряженных частиц топлива до невероятных скоростей – до 50 000 м/с, а это более чем в десять раз выше того, на что способны двигатели в обычных ракетах. Тем не менее скорость, с которой эти частицы выбрасываются, настолько мала, а их тяга так слаба, что они едва способны оторвать от Земли несколько граммов.

Когда вы готовитесь к запуску в космос, вы сидите на большой бочке с взрывчаткой, ожидая, когда та рванет.

Салли Райд (1988)

Вы наверняка задаетесь вопросом (что вполне справедливо), для чего в таком случае нужны ионные двигатели. Оказывается, высокая эффективность последних проявляется в глубоком космосе, вдали от сильной гравитации планет. Запущенный в космос обычной ракетой космический корабль, работающий на ионной тяге, расходует свое топливо медленно, но разумно в течение недель, месяцев и даже лет – постепенно накапливая большую Δv из сравнительно малой массы топлива, что позволяет ему преодолевать огромные расстояния в космическом пространстве.



В 1998 году АМС NASA Deep Space 1 стартовала с Земли на борту Delta II – жидкостной ракеты с тремя твердотопливными ускорителями. Оказавшись в космосе, станция запустила ионный двигатель и отправилась в путешествие по Солнечной системе. Она пролетела мимо кометы и астероида и смогла получить фотографии обоих, а также научные данные о них. В течение своей трехлетней миссии ионный двигатель изменил скорость космического аппарата более чем на 4000 м/с, использовав менее 74 кг своего ксенонового газообразного топлива.

Черт возьми, эта штука взлетела!

Илон Маск (2018)

В настоящее время ученые разрабатывают новые двигатели, способные обеспечивать еще более высокие скорости выхлопа – до сотен тысяч или миллионов метров в секунду. Аппараты с такими двигателями по сути являются продолжением оригинальных идей Циолковского, которым более ста лет. И однажды благодаря им люди смогут попасть в самые отдаленные уголки Солнечной системы или даже за ее пределы.

03. Используйте силу[8]

Рекомендация не бросаться из окна второго этажа является частью науки о взаимном притяжении тел.

Артур Бальфур (1893)

Пейзаж космоса создается гравитацией. Гравитационное поле удерживает Луну около Земли и обуславливает ее вращение вокруг планеты. В течение последних 4,6 миллиарда лет гравитация удерживала планеты Солнечной системы, вращающиеся против часовой стрелки вокруг Солнца. Само Солнце сформировалось в результате коллапса под действием силы тяжести огромного облака газообразного водорода, и теперь, как и сопровождающая его свита из планет, оно вращается вокруг центра нашей галактики Млечный Путь, совершая один оборот за 230 миллионов лет. Млечный Путь – часть более обширного скопления галактик и нитей космического материала, которые пронизывают Вселенную и продолжают свой танец благодаря гравитации. От яблок, падающих с деревьев, до рождения и смерти всей Вселенной – за все ответственна гравитация, и только она.

Таким образом, неудивительно, что, поскольку притяжение Солнца определяет орбиты планет, оно определяет и траектории космических аппаратов, летящих сквозь Солнечную систему от одного небесного тела к другому. Преодоление гравитации Земли – основное препятствие для достижения космоса, и ракеты расходуют огромное количество топлива, чтобы добиться этой цели. Однако, когда аппараты уже в космосе, гравитация может оказаться другом – если знать, что делать.


Всемогущая гравитация

Первая научная теория гравитации принадлежит британскому математику и физику сэру Исааку Ньютону, опубликовавшему ее в 1687 году. Выведенный им закон всемирного тяготения определяет величину гравитационной силы, действующей между двумя телами, с учетом их масс и расстояния между ними. Благодаря этому закону появилась возможность точно описать движение планет. С его помощью Ньютон объяснил, почему соблюдаются законы движения планет, открытые в начале XVII века немецким астрономом Иоганном Кеплером. Кеплер сформулировал свои законы, изучая таблицы астрономических наблюдений, записывая, как положения планет менялись со временем, и отыскивая взаимосвязи, которые могли бы объяснить эти данные. Закон тяготения Ньютона дал эмпирической модели Кеплера прочную научную основу.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История