Один из таких двигателей – ионный. Вместо того чтобы задействовать химическую энергию, выделяемую при сгорании, для создания высокоскоростной выхлопной струи электрические поля в нем используются для ускорения заряженных частиц топлива до невероятных скоростей – до 50 000 м/с, а это более чем в десять раз выше того, на что способны двигатели в обычных ракетах. Тем не менее скорость, с которой эти частицы выбрасываются, настолько мала, а их тяга так слаба, что они едва способны оторвать от Земли несколько граммов.
Когда вы готовитесь к запуску в космос, вы сидите на большой бочке с взрывчаткой, ожидая, когда та рванет.
Вы наверняка задаетесь вопросом (что вполне справедливо), для чего в таком случае нужны ионные двигатели. Оказывается, высокая эффективность последних проявляется в глубоком космосе, вдали от сильной гравитации планет. Запущенный в космос обычной ракетой космический корабль, работающий на ионной тяге, расходует свое топливо медленно, но разумно в течение недель, месяцев и даже лет – постепенно накапливая большую
В 1998 году АМС
Черт возьми, эта штука взлетела!
В настоящее время ученые разрабатывают новые двигатели, способные обеспечивать еще более высокие скорости выхлопа – до сотен тысяч или миллионов метров в секунду. Аппараты с такими двигателями по сути являются продолжением оригинальных идей Циолковского, которым более ста лет. И однажды благодаря им люди смогут попасть в самые отдаленные уголки Солнечной системы или даже за ее пределы.
03. Используйте силу[8]
Рекомендация не бросаться из окна второго этажа является частью науки о взаимном притяжении тел.
Пейзаж космоса создается гравитацией. Гравитационное поле удерживает Луну около Земли и обуславливает ее вращение вокруг планеты. В течение последних 4,6 миллиарда лет гравитация удерживала планеты Солнечной системы, вращающиеся против часовой стрелки вокруг Солнца. Само Солнце сформировалось в результате коллапса под действием силы тяжести огромного облака газообразного водорода, и теперь, как и сопровождающая его свита из планет, оно вращается вокруг центра нашей галактики Млечный Путь, совершая один оборот за 230 миллионов лет. Млечный Путь – часть более обширного скопления галактик и нитей космического материала, которые пронизывают Вселенную и продолжают свой танец благодаря гравитации. От яблок, падающих с деревьев, до рождения и смерти всей Вселенной – за все ответственна гравитация, и только она.
Таким образом, неудивительно, что, поскольку притяжение Солнца определяет орбиты планет, оно определяет и траектории космических аппаратов, летящих сквозь Солнечную систему от одного небесного тела к другому. Преодоление гравитации Земли – основное препятствие для достижения космоса, и ракеты расходуют огромное количество топлива, чтобы добиться этой цели. Однако, когда аппараты уже в космосе, гравитация может оказаться другом – если знать, что делать.
Всемогущая гравитация
Первая научная теория гравитации принадлежит британскому математику и физику сэру Исааку Ньютону, опубликовавшему ее в 1687 году. Выведенный им закон всемирного тяготения определяет величину гравитационной силы, действующей между двумя телами, с учетом их масс и расстояния между ними. Благодаря этому закону появилась возможность точно описать движение планет. С его помощью Ньютон объяснил, почему соблюдаются законы движения планет, открытые в начале XVII века немецким астрономом Иоганном Кеплером. Кеплер сформулировал свои законы, изучая таблицы астрономических наблюдений, записывая, как положения планет менялись со временем, и отыскивая взаимосвязи, которые могли бы объяснить эти данные. Закон тяготения Ньютона дал эмпирической модели Кеплера прочную научную основу.