Читаем Всё о космических путешествиях за 60 минут полностью

Специальная теория относительности была вдохновлена теорией электромагнетизма Максвелла, одним из следствий которой является утверждение, что скорость света – фундаментальная константа природы, а значит, должна оставаться неизменной в любой системе отсчета. Представьте, что вы едете на машине, движущейся со скоростью 50 км/ч, позади машины, скорость которой 30 км/ч, то есть, по сути, вы приближаетесь к этой машине со скоростью 20 км/ч. Теория Максвелла предполагала, что подобное не относится к свету: как бы быстро вы ни передвигались, свет всегда будет двигаться с одинаковой скоростью.

Эта мысль стала одним из краеугольных камней специальной теории относительности. Из нее вытекают и некоторые важные следствия: например, идеи о том, что в движущейся системе отсчета длина тел сокращается, а время течет медленнее и что энергию и массу можно считать эквивалентными, связанными знаменитой формулой Е = тс2. Все это позднее подтвердили эксперименты. Но было и другое предсказание: когда тело ускоряется, его масса увеличивается сначала медленно, а затем быстрее, пока, при достижении телом скорости света, не становится бесконечной. Чтобы заставить бесконечную массу двигаться быстрее, требуется бесконечное количество энергии, из чего Эйнштейн предположил, что ничто не может двигаться быстрее, чем свет. Специальная теория относительности устанавливает скорость света как предел максимальной скорости во Вселенной.

Но в 1915 году Эйнштейн опубликовал общую теорию относительности, в рамках которой определил гравитацию как внешнее проявление искривления пространства-времени. И это открыло двери очень странным возможностям.


Гиперпространство

В 1916 году, через год после публикации общей теории относительности, австрийский ученый Людвиг Фламм использовал ее для построения первой математической модели того, что сегодня ученые называют червоточиной – туннелем во времени и пространстве. Фламм обнаружил, что если взять из общей теории относительности математическое уравнение, описывающее пространство вокруг центрального гравитирующего тела – например, звезды или черной дыры, – то пространство можно расширить внутрь тела и за его пределы вплоть до других областей космоса.



Термин «червоточина» для описания этих теоретических моделей придумал в 1950-х годах американский физик Джон Уилер, который сравнил их с туннелями, образованными червяком в яблоке, – прямой путь с одной стороны до другой всегда короче, чем по поверхности яблока. И именно поэтому червоточины могут быть полезны для космических путешествий. Поскольку, пусть им и не под силу физически ускорить космический аппарат до скоростей, превышающих скорость света, они помогают срезать космические углы, связывая удаленные точки сетью гиперпространственных переулков более высокого измерения, таким образом значительно сокращая время в пути между удаленными звездными системами.

Проблема состоит в том, чтобы удерживать червоточину открытой. Математика предсказывает, что воронка червоточины ведет себя как резиновая трубка, и под воздействием гравитации она сжимается. Общая теория относительности предлагает решение. Она определяет гравитационную силу – или, что то же самое, искривление пространства, – создаваемую любым веществом, которое можно вообразить.

Физики придумали теоретическое вещество, которое назвали «экзотической материей». Оно обладает отрицательным давлением: если вы накачаете им воздушный шар или шины вашего автомобиля, то они взлетят. Однако ключевая особенность экзотической материи состоит в том, что она генерирует «антигравитацию», так что, если в червоточину доставить достаточное количество такой материи, горловина червоточины будет оставаться открытой, пока космический аппарат проходит через нее.

К сожалению, экзотическую материю не так просто найти. Небольшое количество этого вещества удалось получить в лаборатории благодаря эффекту Казимира. Это явление было открыто в 1948 году голландским ученым Хендриком Казимиром. Он обнаружил, что две металлические пластины, разведенные друг от друга на несколько миллионных долей метра в вакууме, слегка притягиваются из-за отрицательного давления экзотической материи между ними.



Экзотическая материя же создается тем, что физики называют «вакуумными флуктуациями» – множеством крошечных субатомных частиц, которые появляются и исчезают в течение очень короткого времени. Квантовая теория говорит, что эти частицы могут рассматриваться и как волны. Так же, как тон частично определяется длиной гитарной струны, между пластинами могут проходить волны только определенной длины. С точки зрения частиц это означает, что между пластинами частицы соударяются реже, чем снаружи. И это делает давление между пластинами ниже – опять же, по сравнению с тем, что снаружи. Но если пространство вокруг пластин является вакуумом, где давление нулевое, то пространство внутри пластин должно иметь давление меньше нуля, то есть отрицательное.


Вперед!

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос
Двенадцатый космонавт
Двенадцатый космонавт

Георгий Тимофеевич Береговой… Человек, знакомый миллионам людей и пользовавшийся большим и заслуженным авторитетом. Летчик-фронтовик, совершивший 186 боевых вылетов, награжденный многими орденами и медалями, Герой Советского Союза, «мастер штурмовых атак». Заслуженный летчик-испытатель СССР, давший путевку в небо многим десяткам крылатых машин, один из лучший испытателей Советского Союза периода 50-х – 60-х годов прошлого века, знаменитый «король штопора». Летчик-космонавт СССР, получивший звание дважды Герой Советского Союза за испытательный полет на космическом корабле «Союз-3» в октябре 1968 года, – за полет, который фактически открыл дорогу в космос целому поколению космических кораблей «Союз», «СоюзТ», «СоюзТМ», орбитальным станциям «Салют» и «Алмаз», орбитальному комплексу «Мир».  

Сергей Чебаненко

Публицистика / Астрономия и Космос / История