Теория Большого взрыва прошла все испытания. Обоснования, позволяющие экстраполировать величины на события, происходившие, когда наша Вселенная расширялась всего одну секунду (когда начал формироваться гелий), достойны того, чтобы приниматься так же серьезно, как, например, выводы о ранней истории Земли, которые делаются на основании исследования камней и окаменелых остатков организмов. Они точно так же являются непрямыми и имеют меньше количественных характеристик.
Возможно, мы могли бы углубить наше понимание ключевых космических чисел и даже «объяснить» их, продолжив экстраполяцию дальше – не только на первую секунду, но и на первую крохотную долю секунды.
Мы определенно можем вернуться ближе к Большому взрыву, но не намного. В течение первой миллисекунды мы менее уверены в физической сущности происходящего, потому что плотность материи превышала плотность нейтронной звезды. Очень высокую температуру и степень сжатия можно имитировать в микроскопическом масштабе с помощью экспериментов, где частицы с высокой энергией сталкиваются друг с другом. Но у этой методики имеются определенные пределы. Даже гигантский Большой адронный коллайдер, построенный Европейским центром ядерных исследований (CERN) в Женеве, не достигнет тех энергий, которые имели частицы в первые 10–14 секунд Большого взрыва. Многие характерные черты нашей Вселенной могли сформироваться, когда космические часы показывали 10–35 секунд или даже меньше. В таких условиях каждая степень десяти на космических часах, отсчитывающих возраст Вселенной, – каждый лишний ноль после запятой – была наполнена событиями и должна в равной мере приниматься в расчет. Таким образом, переход от отметки 10–14 к 10–35 секунд больше (по той причине, что между ними больше степеней десяти), чем временно́й интервал между трехминутным пределом, когда сформировался гелий (примерно 200 секунд от начала Большого взрыва) и настоящим временем (3×1017 секунд или 10 млрд лет). С такой точки зрения даже на более ранних этапах произошло множество событий.
ЕДИНООБРАЗИЕ В МИКРОМИРЕ
Возвращаясь к началу нашего разговора, можно сказать, что загадки космоса и микромира пересекаются. Чтобы изучить эти загадки, нам нужно установить связи между тяготением (силой, которая доминирует в больших масштабах) и другими силами, которые управляют отдельными частицами. Это дело все еще не завершено. Но различные силы и частицы внутри атома сейчас представляются нам вполне согласованными.
В начале XIX в. Майкл Фарадей понял, что электричество и магнетизм непосредственно связаны: движущийся магнит создает электрические токи, а движущийся электрический заряд, наоборот, создает магнитное поле. Эти принципы легли в основу электромоторов и динамо-машин. В 1864 г. Джеймс Кларк Максвелл описал открытия Фарадея в знаменитых уравнениях, которые выражают, как изменяющееся электрическое поле создает магнитное и наоборот. В открытом пространстве эти уравнения имеют решения, при которых электрические и магнитные поля колеблются. Именно сочетанием таких полей и является свет – это волна электрической и магнитной энергии (как и радиоволны, рентгеновские лучи и все остальное, что мы сейчас называем электромагнитным спектром).
Таким образом, мы видим две основные силы: электромагнетизм (понимаемый как единая сила) и тяготение. Даже Фарадей стремился отыскать общность между тяготением и электромагнетизмом, хотя и понимал, что это преждевременно. Сто лет спустя Эйнштейн провел свои последние годы в поисках глубокой связи между этими двумя силами. Эти искания вновь оказались напрасными. На самом деле теперь мы понимаем, что они были обречены, потому что Эйнштейн не знал о работающих на коротких расстояниях силах, которые действуют внутри атомного ядра: сильное или ядерное взаимодействие, которое связывает вместе протоны и нейтроны в атомном ядре (и определяет наше число ε); и слабое взаимодействие, важное для радиоактивного распада и нейтрино. По несколько грубому мнению физика Абрахама Пайса, самого прославленного биографа великого ученого, Эйнштейн «мог с таким же успехом заниматься рыбалкой» в последние 30 лет своей жизни.