Теперь трудность задачи состоит в том, чтобы объединить
В 1950-х и 1960-х гг. было открыто так много новых частиц (добавившихся к хорошо знакомым электронам, нейтронам и протонам), что казалось: ученые, занимающиеся физикой частиц, рискуют превратиться в «коллекционеров марок». Но в череде этих частиц обнаружилась система; субатомные частицы можно было объединять в «семьи», подобно тому как атомы в периодической таблице Менделеева подразделяются на периоды и группы. В 1964 г. Мюррей Гелл-Ман и Джордж Цвейг, два американских физика-теоретика, предложили «кварковую модель». Кварки имеют заряд, составляющий 1/3 или 2/3 от заряда электрона. Экспериментальную поддержку теории обеспечили Джером Фридман, Генри Кендалл и Ричард Тейлор, которые использовали новейший линейный ускоритель в Стэнфорде, чтобы бомбардировать протоны электронами. Ученые обнаружили, что электроны рассеиваются так, будто каждый протон состоит из трех «точечных зарядов», содержащих соответственно 2/3, 2/3 и – 1/3 общего заряда. Тем не менее один из неожиданных аспектов «кварковой модели» состоит в том, что отдельный кварк вычленить никак нельзя, хотя внутри протона кварки ведут себя как свободные частицы. (Все попытки обнаружить частично заряженные частицы провалились.) В конце 1970-х гг. бо́льшая часть «зоопарка частиц» была объяснена в категориях 9 типов кварков.
Так называемая «стандартная модель», которая появилась в 1970-х гг., внесла в микромир потрясающий порядок. Электромагнитная сила и слабое взаимодействие были объединены, а сильные или ядерные силы были интерпретированы с точки зрения кварков, которые скрепляет вместе еще одна частица под названием «глюон». Но никто не считал, что последнее слово в этой области сказано: количество элементарных частиц остается обескураживающе большим, а уравнения все еще включают числа, которые были определены экспериментальным путем и пока не подтверждены теорией. В частности, объяснение на основе глюонов не связано с конкретным значением силы ядерного взаимодействия, которое решающим образом проявляет себя в нашем основном числе ε = 0,007.
После объединения электромагнитной силы и слабого взаимодействия следующей целью стало добавить ядерную силу и таким образом добиться так называемой «теории великого объединения» всех сил, управляющих физикой микромира (хотя все эти теории пока что недостаточно «велики», чтобы включить в себя тяготение, это по-прежнему трудная задача). Камень преткновения в том, что великое объединение, как полагают, имеет место при температуре 1028 градусов. Это в миллион миллионов раз выше, чем можно достичь в процессе современных экспериментов, а чтобы добиться требуемой энергии, потребуется ускоритель размером больше Солнечной системы. Поэтому на Земле эти теории проверить очень трудно.
Их специфическое влияние на мир низких энергий имеет зачаточный характер: например, протоны, главные составляющие всех звезд и планет, распадаются очень медленно – этот эффект будет важен в отдаленном будущем, но сейчас не имеет значения. Тем не менее
ПОНЯТИЕ «ИНФЛЯЦИИ»