Как можно обнаружить гравитационные волны и наладить наблюдение за ними? В каждой волне есть скручивающие пространство вихри, о которых мы говорили. Но по мере путешествия в межгалактическом пространстве вихри становятся настолько слабыми, что мы не можем засечь их с помощью доступных технологий.
К счастью, эти волны также растягивают и сжимают само пространство. Это растяжение и сжатие также довольно небольшое, но оно идеально подходит для обнаружения и мониторинга методом лазерной интерферометрии. В соответствии с этим, в 1983 году мы с коллегами Райнером Вайссом (из Массачусетского технологического института) и Роном Древером (из Калифорнийского технологического института) начали проект LIGO
– лазерно-интерферометрической гравитационно-волновой обсерватории.Концепция детекторов гравитационных волн LIGO
схематически изображена на рисунке 8. Четыре зеркала (каждое весом в 40 кг) закреплены на подвесных опорах. Два зеркала ориентированы в одну сторону (скажем, по направлению восток – запад), а другие два ориентированы в перпендикулярном направлении (скажем, север – юг), и зеркала каждого рукава разнесены на 4 километра (которые обозначены на рисунке буквой L). Когда приходит гравитационная волна, она одновременно раздвигает зеркала восток – запад и сдвигает зеркала север – юг на одинаковое ничтожное расстояние: примерно 10-17 см. По мере того как волна переходит от своего гребня к впадине, направление сжатия и растяжения пространства меняется, а затем меняется опять и так далее. Временные промежутки следуют некоторому шаблону (форме волны), который несет в себе закодированную информацию об источнике волны.
Рис. 8. Лазерно-интерферометрическая гравитационно-волновая обсерватория
В обсерватории LIGO
эти движения отслеживаются с помощью лазерного луча – лазерной метрологии сверхвысокой точности, а изображение источника гравитационной волны извлекается из наблюдаемой формы волны путем сравнения с компьютерными моделями.Вайсс, которому принадлежит идея этого проекта, – гениальный ученый. Несколько лет я был настроен чрезвычайно скептически, я не думал, что это когда-либо сработает. Я был не прав. Но чтобы понять мой скептицизм, подумайте о том, насколько незначительны движения этих зеркал. Толщина человеческого волоса примерно 10-2
см. Разделите эту цифру на 100 и вы получите длину волны света, используемую в LIGO – один микрон. Разделите это на 10 000 и получите диаметр атома – самую малую величину, когда-либо запечатленную микроскопом. Разделите это еще на 100 000 и получите диаметр ядра атома. А теперь разделите это еще на 1000 и получите движения, которые засекает LIGO: 10–17 сантиметра!Расстояние настолько мало, что на этом уровне движения зеркал LIGO
регулируются законами не классической, а скорее квантовой физики. Например, принцип неопределенности Гейзенберга гласит, что сам акт столь точного измерения местоположения зеркала весом 40 килограммов неизбежно нарушит его скорость на величину, различимую для LIGO. Мы никогда еще не видели, чтобы объект размером с человека вел себя квантово-механически. В LIGO мы собираемся сделать это в течение следующих нескольких лет, и для этого мы используем принципы нового раздела науки – квантовой теории информации. Я и мои студенты провели большую часть 1980-х годов, теоретически исследуя необходимую технологию, а в начале 2000-х, наконец, у нас появились первые практические разработки.Проект LIGO
сейчас приближается к зениту. В 1990-х годах мои коллеги-экспериментаторы под руководством Барри Бариша (из Калтеха) сконструировали оборудование для размещения наших детекторов гравитационных волн, а с 2000 по 2005 год они установили детекторы первого поколения и тщательно калибровали их, пока не достигли нужной чувствительности. С 2005 по 2010 год мы проводили первоначальный поиск космических гравитационных волн не только от сталкивающихся черных дыр, но и от других источников. Мы ничего не нашли, но это было ожидаемо.Когда мы с коллегами представляли проект LIGO
, мы предупреждали, что детекторы первого поколения могут быть недостаточно хороши, чтобы засечь волны. Тем не менее, их необходимо было сконструировать, получить опыт работы с ними для создания детекторов второго поколения (Advanced LIGO), которые намного сложнее технически и будут обладать куда большей чувствительностью – достаточной, чтобы увидеть богатое разнообразие гравитационных волн. Наша группа экспериментаторов начала установку Advanced LIGO в октябре 2010 года, и дело идет очень неплохо. К 2017 году, а возможно, и раньше, эти детекторы должны зарегистрировать много волн. Вкупе с аналогичными детекторами в Европе (проект Virgo французов, итальянцев и голландцев, проект Geo Project немцев и британцев) и другими астрономическими инструментами LIGO знаменует вступление в новую эру мультиканальной астрономии.