Читаем Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной полностью

В 1970-е гг. было обнаружено, что для объяснения параметров вращения галактик нужна дополнительная масса.

Одним из лучших наблюдательных примеров, подтверждающих присутствие темного вещества, является скопление Пуля (Bullet cluster). Это два столкнувшихся скопления галактик, которые прошли сквозь друг друга. Горячий газ, покинувший скопления в результате столкновения, оказался между ними и наблюдается в рентгеновском диапазоне. В то же время наблюдения гравитационного линзирования показывают, что скопления по-прежнему обладают большой распределенной массой, которую нельзя объяснить звездами или газом в галактиках.

Темное вещество не может быть барионным.

В конце 1960-х – начале 1970-х гг. исследования первичного нуклеосинтеза, проведенные Робертом Вагонером (Robert Wagoner), Хубером Ривзом (Hubert Reeves) и их коллегами, показали, что количество синтезированного гелия, дейтерия и лития очень сильно зависит от плотности барионов, которая не может превышать 10 % от критического значения (соответствующего плоской Вселенной). Согласно этим расчетам, современное количество барионов не позволяет объяснить массивные гало галактик или «лишнюю» массу в скоплениях. Так начала формироваться концепция небарионной темной материи.

Рост флуктуаций плотности темного вещества привел к образованию галактик и их скоплений.

Первыми кандидатами в частицы темного вещества были нейтрино. До 1990-х гг. не удавалось достаточно точно оценить массы этих частиц, а мы знаем, что Вселенная заполнена реликтовыми нейтрино (в каждом кубическом сантиметре их более сотни). Однако в итоге выяснилось, что нейтрино вносят лишь очень небольшой вклад в темное вещество из-за своей низкой массы, а также из-за слабой способности к скучиванию (т. е. к образованию областей более высокой плотности, таких как гало галактик). Теоретикам потребовалось предложить кандидатов с необходимыми свойствами.

Темное вещество сыграло большую роль в истории Вселенной. Дело в том, что до эпохи рекомбинации (см. раздел 11.8 «Ранняя Вселенная») возмущения плотности в обычном веществе не могли эффективно расти. Начав с неоднородностей на уровне 0,00001 (что наблюдается по реликтовому излучению), области повышенной плотности не успели бы превратиться в галактики и их скопления к нашему времени. Положение спасло темное вещество: неоднородности в распределении этой составляющей Вселенной могли начать расти под действием гравитации гораздо раньше. Именно по этой причине стало возможным появление первых звезд, которые произвели тяжелые элементы. Если бы в нашей Вселенной не было бы темного вещества, темная энергия успела бы растащить барионное вещество до того, как оно начало складываться в галактики.

Частицы темного вещества слишком слабо взаимодействуют друг с другом, и это не позволяет ему образовывать очень компактные структуры, такие как звезды и галактики. Темное вещество может быть распределено только в виде достаточно рыхлых структур, зато его много, поэтому оно «указывает» барионному веществу, куда двигаться. А затем барионное вещество может формировать плотные объекты внутри облаков темного вещества (во внутренних частях и дисках галактик уже барионное вещество «управляет» движением темной материи, поскольку в этих областях превосходит его по массе).

В ряде экспериментов ученые пытаются поймать частицы темного вещества в лабораториях.

В настоящее время существует несколько предложенных теоретиками хороших кандидатов на роль частиц темного вещества. Обычно их объединяют под аббревиатурой WIMP (Weakly Interacting Massive Particles – слабо взаимодействующие массивные частицы), самые известные из них – нейтралино и гравитино. Многие из обсуждаемых кандидатов связаны с понятием суперсимметрии в физике частиц. Хорошими кандидатами являются также аксионы.

Существуют экзотические сценарии, в которых не используется концепция темного вещества (в первую очередь речь идет о так называемой модифицированной ньютоновской динамике – MOND). Однако на сегодняшний день они представляются крайне маловероятными, хотя исследования в этом направлении продолжаются.

Активно идут поиски прямых астрономических сигналов от частиц темного вещества – в первую очередь это гамма-излучение, возникающее при возможной аннигиляции частиц темного вещества со своими античастицами. Для прямого детектирования частиц темного вещества ведется ряд экспериментов, в основном в подземных лабораториях (чтобы свести к минимуму влияние частиц космических лучей). Есть также некоторые надежды, что частицы темного вещества могут быть обнаружены в экспериментах на крупных ускорителях.

Перейти на страницу:

Все книги серии Книги политеха

Легко ли плыть в сиропе. Откуда берутся странные научные открытия
Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Генрих Владимирович Эрлих , Сергей М. Комаров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Хаос. Создание новой науки
Хаос. Создание новой науки

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.В формате PDF A4 сохранен издательский макет.

Джеймс Глик

Научная литература
Луна. История будущего
Луна. История будущего

Британский журналист и писатель Оливер Мортон освещает в своих работах влияние научно-технического прогресса на нашу жизнь. Луна испокон веков занимала второстепенное место в мифологическом сознании, в культурном контексте, а потом и в астрономических исследованиях. Краткий апогей ее славы, когда по лунной поверхности прошлись люди, окончился более полувека назад. И тем не менее Луна всегда рядом, скромная, но незаменимая, неразрывно связанная с прошлым, настоящим и будущим человечества. Мортон создает ее объемный портрет, прорисовывает все грани нашего с ней взаимодействия и наглядно показывает: что бы ни происходило с нами дальше, Луна продолжит играть свою тихую, но ключевую роль.В формате PDF A4 сохранен издательский макет книги.

Оливер Мортон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной

Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?

Сергей Борисович Попов

Справочники

Похожие книги

Справочник практического врача. Книга 1
Справочник практического врача. Книга 1

В справочнике описаны основные клинические проявления, диагностические признаки, принципы лечения заболеваний, с которыми постоянно встречаются практические врачи. Представлены болезни органов кровообращения, дыхания, пищеварения, ревматические болезни, болезни почек и мочевых путей, системы крови, эндокринные и обменные болезни, профессиональные болезни, отравления, инфекционные, детские, женские, глазные, кожные и венерические болезни; содержатся сведения о нервных и психических заболеваниях, сексуальных расстройствах, хирургической патологии и болезнях уха, горла и носа, зубов и полости рта.Книга предназначена для врачей всех специальностей, а также будет полезна широкому кругу читателей.

Алексей Викторович Тополянский , Владимир Иосифович Бородулин

Справочники