Из-за высокой температуры и плотности кварки не могут объединяться в адроны. В частности, не могут стабильно существовать барионы (в том числе протоны и нейтроны), а Вселенная заполнена кварк-глюонной плазмой. С момента начала расширения прошло менее нескольких десятков микросекунд, и когда температура падает примерно до триллионов градусов, начинают формироваться адроны – возникают протоны и нейтроны. Однако существование более сложных структур – атомных ядер – пока невозможно.
С момента Большого взрыва прошло менее секунды, и при температуре около 10 млрд градусов нейтрино становятся свободными – Вселенная для них теперь практически прозрачна. В настоящее время эти реликтовые нейтрино заполняют Вселенную, в каждом кубическом сантиметре их более сотни. Их температура сейчас составляет около 2 K.
Спустя примерно 10 секунд, когда температура падает до нескольких миллиардов градусов, аннигилируют электроны и позитроны, оставляя избыток электронов. Но температура пока слишком велика, чтобы электроны и протоны могли образовывать нейтральный водород.
Число протонов не равно числу нейтронов, поскольку эти частицы имеют разные массы (нейтроны тяжелее, поэтому их меньше). Когда Вселенная остывает примерно до миллиарда градусов, начинают идти ядерные реакции: протоны и нейтроны объединяются, формируя ядра атомов. Первым спустя несколько секунд после начала расширения образуется дейтерий. Затем образуются гелий, литий и бериллий. Основной нуклеосинтез происходит примерно между 1-й и 5-й минутами с начала расширения.
Поскольку число протонов в несколько раз больше числа нейтронов, основным элементом является водород, на втором месте находится гелий. Дейтерий в основном «сгорает» в реакциях синтеза гелия, а образование более тяжелых элементов не успевает произойти, поскольку стабильных ядер из пяти или восьми частиц не существует (небольшое количество 7
Be, 7Li формируется при соединении ядер 3He и 4He). Спустя пару тысяч секунд температура и плотность падают настолько, что дальнейшие ядерные реакции становятся невозможными.Первичный нуклеосинтез начинается примерно спустя минуту после Большого взрыва и длится несколько минут.
Динамика Вселенной по-прежнему определяется излучением, и эта эпоха длится примерно 50 000–60 000 лет. После этого начинает доминировать вещество, в основном темное, так как его в несколько раз больше по массе. Поскольку мы пока не знаем, из каких частиц оно состоит, сложно точно указать время его появления, но это должно происходить достаточно рано в истории Вселенной.
Масштабный фактор на стадии доминирования вещества начинает расти быстрее – пропорционально времени в степени 2/3. Следующий важный эпизод – рекомбинация: вещество остывает настолько, что электроны могут удержаться вокруг протонов и ядер гелия, и в результате Вселенная становится прозрачной для собственного излучения, которое раньше взаимодействовало со свободными электронами. Этот момент (примерно 380 000 лет после Большого взрыва) соответствует красному смещению около 1100 (т. е. с тех пор масштабный фактор вырос примерно в 1100 раз). На этом рассказ о ранней Вселенной можно закончить – с этого момента могут расти неоднородности в распределении обычного вещества. Через десятки (или малые сотни) миллионов лет из них возникнут первые звезды, а затем спустя сотни миллионов лет – галактики.
Глава 12
Реликтовое излучение
Важнейшим подтверждением модели горячего Большого взрыва стало открытие реликтового излучения. Оставшееся от эпохи горячей Вселенной, оно заполняет всю Вселенную, имеет чернотельный спектр и температуру чуть менее 3 К.
Несмотря на предсказания теоретиков, реликтовое излучение было обнаружено в 1965 г. случайно. Сейчас это один из главных инструментов исследования в космологии, поэтому существует большое количество наземных инструментов, предназначенных специально для наблюдений реликтового излучения. Кроме того, в космос было запущено несколько специализированных научных спутников, с помощью которых удалось построить карты распределения температуры реликтового излучения по всему небу.
12.1. Модель горячего Большого взрыва