Турбулентность в земной атмосфере приводит к тому, что на зеркало телескопа от далекого точечного источника (например, звезды) приходит не плоский волновой фронт, а искаженный. Характерный масштаб неоднородностей в атмосфере составляет 10–30 см, из-за чего изображение точечного источника начинает состоять из отдельных ярких элементов – спеклов, которые за время экспозиции сливаются в сплошной диск размером около или чуть менее одной угловой секунды. При этом дифракционный предел на угловое разрешение телескопа может составлять сотые доли секунды, и для приближения к этому пределу в оптический тракт телескопа (обычно в фокус) вводится дополнительное специальное деформируемое зеркало (или несколько). Система управления сравнивает изображение эталонного источника (это либо яркая звезда, либо чаще «искусственная звезда» – возбужденное лазером свечение верхних слоев атмосферы) с идеальной картиной, на основании чего вырабатывается управляющий сигнал, подаваемый на деформируемое зеркало. Форма зеркала меняется так, чтобы максимально восстановить волновой фронт (т. е. компенсировать искажения, внесенные атмосферной турбулентностью) в отраженном потоке. Коррекцию можно проводить сотни раз в секунду, что позволяет практически полностью убрать влияние атмосферной турбулентности.
Современные телескопы оборудованы системой адаптивной оптики, позволяющей улучшить угловое разрешение за счет компенсации атмосферных искажений.
В пятерке крупнейших телескопов есть два инструмента нестандартной конструкции. Это 10-метровый Hobby-Eberly Telescope (Хобби – Эберли, Обсерватория Макдональда, Техас) и 9,2-метровый Southern African Large Telescope (Большой Южноафриканский телескоп, ЮАР). Главные зеркала этих телескопов не могут наводиться в любую точку неба, они вращаются лишь по азимуту, зато простота монтировки (опорно-поворотного устройства телескопа) делает эти конструкции намного дешевле. Тем не менее движение узлов крепления вторичных зеркал позволяет наблюдать около 70 % доступной части неба. Правда, длительность экспозиции (непрерывной съемки) ограничена, а поле зрения невелико, и одновременно использовать полностью всю площадь светособирающей поверхности невозможно. Зеркала этих телескопов сегментированные и имеют сферическую форму, что также резко уменьшает их стоимость. По многим характеристикам такие инструменты уступают телескопам вроде Subaru или VLT, однако низкая стоимость ($10–20 млн против $200–300 млн) делает такие системы привлекательными. Они применяются в основном для спектральных исследований отдельных астрономических источников.
Ввиду большой стоимости крупнейших телескопов и длительности их разработки и создания большое внимание уделяется модернизации и замене детекторов, используемых на них, а также совершенствованию алгоритмов обработки информации и составлению актуальных программ исследования. Суммарная стоимость детекторов различного типа (спектрографы, поляриметры и др.), используемых на крупных инструментах, может быть сравнима со стоимостью самого телескопа. Однако именно разработка новых детекторов и их регулярная модернизация помогают в течение десятилетий эффективно использовать большие инструменты.
Совершенно особое место в наблюдательной астрономии занимает Hubble Space Telescope («Хаббл»). Этот 2,4-метровый телескоп системы Ричи – Кретьена был выведен на орбиту шаттлом Discovery («Дискавери») в 1990 г. С тех пор оборудование на нем несколько раз обновляли, что позволило в течение десятилетий поддерживать работоспособность и научную конкурентоспособность инструмента. Благодаря работе телескопа вне пределов атмосферы на нем можно не только получать изображения высокой четкости, но и работать в ультрафиолетовом и ближнем инфракрасном диапазонах.
Существуют планы по созданию еще более крупных инструментов: следующее поколение наземных оптических телескопов будет иметь диаметр главного зеркала 25–40 м. Сейчас детально проработано три проекта, два из них находятся в стадии активного строительства. Эти большие телескопы должны начать научные наблюдения в 2020-е гг.
Первым новым крупным наземным инструментом, вероятно, станет Giant Magellan Telescope (GMT, Гигантский Магелланов телескоп). Его зеркало будет состоять из семи сегментов, каждый размером по 8,4 м. GMT будет установлен в Чили, в обсерватории Лас-Кампанас, и по плану войдет в строй в первой половине 2020-х гг.
Самый крупный инструмент следующего поколения – European Extremely Large Telescope (E-ELT, Экстремально Большой Европейский телескоп) Европейской южной обсерватории, который будет построен рядом с обсерваторией Паранал в Чили и введен в строй в середине 2020-х гг. Его сегментированное почти 40-метровое зеркало будет состоять из сотен отдельных управляемых элементов.