Другой тип наземных установок регистрирует сами вторичные частицы, порожденные гамма-квантами в атмосфере. Водяные черенковские детекторы представляют собой цистерны, заполненные водой. При попадании в них электроны испускают черенковское излучение, регистрируемое фотоумножителями. Угловое разрешение таких установок невелико, зато они могут работать практически постоянно и получают данные о фотонах очень высоких энергий.
Обсерватория HAWC (High-Altitude Water Cherenkov Observatory, Высокогорная водная черенковская обсерватория, Мексика) состоит из нескольких сотен емкостей, каждая из которых содержит по 188 т воды. Она позволяет регистрировать фотоны с энергиями до 100 ТэВ (почти в миллион миллиардов раз выше энергии красных фотонов видимой части спектра).
Существуют и другие методики регистрации вторичных частиц. Например, сцинтилляционные детекторы установки Tibet-III или счетчики с резистивными платами (resistive plate counters) установки ARGO-YBJ (Astrophysical Radiation with Ground-based Observatory at YangBaJing, Наземная обсерватория астрофизической радиации в Янбацзине). Однако пока они менее эффективны.
Отдельное место в гамма-астрономии занимают космические гамма-всплески. Они были открыты в 1967 г. c помощью американских спутников-разведчиков Vela (название происходит от испанского velar – нести дозор), предназначенных для слежения за ядерными испытаниями. Из-за плохого углового разрешения в гамма-диапазоне до 1997 г. не удавалось даже определить, на каких расстояниях они происходят. Одновременная регистрация гамма- и рентгеновского излучения от одного из всплесков приборами, установленными на борту итало-голландского спутника BeppoSAX (Beppo – в честь итальянского физика Джузеппе Оккиалини (Giuseppe Occhialini), Satellite per Astronomia a raggi X–Cпутник для рентгеновской астрономии), позволила определить достаточно точные координаты события. В результате удалось провести оптические наблюдения на крупных телескопах, был открыт транзиентный оптический источник в далекой галактике, и подтвердилась гипотеза космологического происхождения гамма-всплесков.
Космические гамма-всплески связаны со слияниями нейтронных звезд и со вспышками особого типа сверхновых.
Гамма-всплески делят на два типа. Короткие (обычно короче нескольких секунд) связывают со слияниями нейтронных звезд, а длинные (до нескольких часов) – со взрывами массивных звезд с быстро вращающимися ядрами. В год наблюдается несколько сотен гамма-всплесков, это одни из самых мощных взрывных процессов, происходящих в настоящее время во Вселенной.
Поиск аннигиляции частиц темного вещества – перспективная задача гамма-астрономии.
Хотя обычно основная энергия всплеска приходится на диапазон энергий до 1 МэВ, для некоторых всплесков были получены данные и на гораздо больших энергиях – вплоть до нескольких гигаэлектронвольт. Детали механизма излучения гамма-всплесков остаются неясными, поэтому здесь необходимы новые наблюдения, в том числе и на очень высоких энергиях.
Количество известных гамма-источников (не считая космических гамма-всплесков и солнечных вспышек) составляет сейчас несколько тысяч. Однако в основном они обнаружены спутником Fermi на энергиях ниже 300 ГэВ. С ростом энергии число известных источников уменьшается, среди них много неидентифицированных объектов. Большинство идентифицированных гамма-источников относится или к пульсарам, или к активным ядрам галактик, и дальнейшие наблюдения помогают лучше понять эти типы источников и механизмы генерации излучения в них. Возможно, самой перспективной задачей гамма-астрономии является обнаружение аннигиляционного сигнала от темного вещества. Во многих моделях предсказывается, что частицы, составляющие темную материю, могут аннигилировать друг с другом, порождая гамма-кванты. Обнаружение аннигиляционного гамма-сигнала было бы прямым доказательством существования этой составляющей нашей Вселенной.
13.7. Детекторы нейтрино
Нейтрино – это легкие незаряженные частицы, относящиеся к лептонам. Известно три типа нейтрино: электронные, мюонные и тау, все типы нейтрино имеют античастицы. Эти частицы относятся к самым фундаментальным – они входят в Стандартную модель элементарных частиц. С другой стороны, обнаружение массы у нейтрино и открытие нейтринных осцилляций (в некотором смысле превращение одного типа нейтрино в другой) является важнейшим доказательством неполноты Стандартной модели.
Нейтрино – фундаментальные элементарные частицы, участвующие в слабом взаимодействии.